These two spacecraft are called STEREO, short for Solar and Terrestrial Relations Observatory. Launched on Oct. 25, 2006, and originally slated for a two-year mission, both spacecraft sent back data for nearly eight years, and STEREO-A still sends information and images from its point of view on the far side of the sun.
STEREO watches the sun from two completely new perspectives. It also provides information invaluable for understanding the sun and its impact on Earth, other worlds, and space itself – collectively known as space weather. On Earth, space weather can trigger things like the aurora and, in extreme cases, put a strain on power systems or damage high-flying satellites.
Because the rest of our sun-watching satellites orbit near our home planet, STEREO’s twin perspectives far from Earth give us a unique opportunity to look at solar events from all sides and understand them in three dimensions.
We use data from STEREO and other missions to understand the space environment throughout the solar system. This helps operators for missions in deep space prepare for the sudden bursts of particles and magnetic field that could pose a danger to their spacecraft.
STEREO has also helped us understand other objects in our solar system – like comets. Watching how a comet’s tail moves gives us clues about the constant stream of particles that flows out from the sun, called the solar wind.
STEREO is an essential piece of our heliophysics fleet, which includes 17 other missions. Together, these spacecraft shed new light on the sun and its interaction with space, Earth, and other worlds throughout the solar system.
To celebrate, we’re hosting a Facebook Live event on Wednesday, Oct. 26. Join us at noon ET on the NASA Sun Science Facebook page to learn more about STEREO and ask questions.
Learn more about how NASA studies the sun at: www.nasa.gov/stereo
Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Before we tell you about Enceladus, let’s first talk about our Cassini spacecraft…
Our Cassini mission to Saturn is one of the most ambitious efforts in planetary space exploration ever mounted. Cassini is a sophisticated robotic spacecraft orbiting the ringed planet and studying the Saturnian system in detail.
Cassini completed its initial four-year mission to explore the Saturn System in June 2008. It has also completed its first mission extension in September 2010. Now, the health spacecraft is making exciting new discoveries in a second extension mission!
Enceladus
Enceladus is one of Saturn’s many moons, and is one of the brightest objects in our solar system. This moon is about as wide as Arizona, and displays at least five different types of terrain. The surface is believed to be geologically “young”, possibly less than 100 million years old.
Cassini first discovered continually-erupting fountains of icy material on Enceladus in 2005. Since then, the Saturn moon has become one of the most promising places in the solar system to search for present-day habitable environments.
Scientists found that hydrothermal activity may be occurring on the seafloor of the moon’s underground ocean. In September, it was announced that its ocean –previously thought to only be a regional sea – was global!
Since Cassini is nearing the end of its mission, we are able to make a series of three close encounters with Enceladus, one of Saturn’s moons.
Close Encounters
On Oct. 14, Cassini performed a mid-range flyby of Enceladus, but the main event will take place on Oct. 28, when Cassini will come dizzyingly close to the icy moon. During this flyby, the spacecraft will pass a mere 30 miles above the moon’s south polar region!
This will be the deepest-ever dive through the moon’s plume of icy spray, where Cassini can collect images and valuable data about what’s going on beneath the frozen surface.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Relationships can be complicated — especially if you’re a pair of stars. Sometimes you start a downward spiral you just can’t get out of, eventually crash together and set off an explosion that can be seen 130 million light-years away.
For Valentine’s Day, we’re exploring the bonds between some of the universe’s peculiar pairs … as well as a few of their cataclysmic endings.
When you look at a star in the night sky, you may really be viewing two or more stars dancing around each other. Scientists estimate three or four out of every five Sun-like stars in the Milky Way have at least one partner. Take our old north star Thuban, for example. It’s a binary, or two-star, system in the constellation Draco.
Alpha Centauri, our nearest stellar neighbor, is actually a stellar triangle. Two Sun-like stars, Rigil Kentaurus and Toliman, form a pair (called Alpha Centauri AB) that orbit each other about every 80 years. Proxima Centauri is a remote red dwarf star caught in their gravitational pull even though it sits way far away from them (like over 300 times the distance between the Sun and Neptune).
Credit: ESO/Digitized Sky Survey 2/Davide De Martin/Mahdi Zamani
Sometimes, though, a stellar couple ends its relationship in a way that’s really disastrous for one of them. A black widow binary, for example, contains a low-mass star, called a brown dwarf, and a rapidly spinning, superdense stellar corpse called a pulsar. The pulsar generates intense radiation and particle winds that blow away the material of the other star over millions to billions of years.
In romance novels, an air of mystery is essential for any love interest, and black holes are some of the most mysterious phenomena in the universe. They also have very dramatic relationships with other objects around them!
Scientists have observed two types of black holes. Supermassive black holes are hundreds of thousands to billions of times our Sun’s mass. One of these monsters, called Sagittarius A* (the “*” is pronounced “star”), sits at the center of our own Milky Way. In a sense, our galaxy and its black hole are childhood sweethearts — they’ve been together for over 13 billion years! All the Milky-Way-size galaxies we’ve seen so far, including our neighbor Andromeda (pictured below), have supermassive black holes at their center!
These black-hole-galaxy power couples sometimes collide with other, similar pairs — kind of like a disastrous double date! We’ve never seen one of these events happen before, but scientists are starting to model them to get an idea of what the resulting fireworks might look like.
One of the most dramatic and fleeting relationships a supermassive black hole can have is with a star that strays too close. The black hole’s gravitational pull on the unfortunate star causes it to bulge on one side and break apart into a stream of gas, which is called a tidal disruption event.
The other type of black hole you often hear about is stellar-mass black holes, which are five to tens of times the Sun’s mass. Scientists think these are formed when a massive star goes supernova. If there are two massive stars in a binary, they can leave behind a pair of black holes that are tied together by their gravity. These new black holes spiral closer and closer until they crash together and create a larger black hole. The National Science Foundation’s LIGO project has detected many of these collisions through ripples in space-time called gravitational waves.
Credit: LIGO/T. Pyle
Here’s hoping your Valentine’s Day is more like a peacefully spiraling stellar binary and less like a tidal disruption! Learn how to have a safe relationship of your own with black holes here.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
How are decisions made about what experiments are sent into space? Are there certain kinds of experiments that NASA wants to conduct every time cargo is launched to the ISS, or are there occasionally experiments that are duplicated for more observation and data collection?
Tissue chips, thumb-drive sized devices that contain human cells in a 3D matrix, represent a giant leap in science.
They can test cells’ response to:
•stresses
•drugs
•genetic changes
The Tissue Chips in Space initiative seeks to better understand the role of microgravity on human health and disease and to translate that understanding to improved human health on Earth.
This series of investigations to test tissue chips in microgravity aboard the International Space Station is planned through a collaboration between the National Center for Advancing Translational Sciences (NCATS) at the National Institutes for Health (NIH) and the National Laboratory in partnership with NASA.
Many of the changes in the human body caused by microgravity resemble the onset and progression of diseases associated with aging on Earth, but in space, changes occur much faster. Scientists may be able to use tissue chips in space to model changes that take months or years to happen on Earth.
A tissue chip needs three properties, according to Lucie Low, scientific program manager at NCATS. “It has to be 3D,” she explained. “It must have multiple different types of cells, and it must have microfluidic channels. Essentially, you get a functional unit of what human tissues are like, outside of the body,” said Low.
As accurate models of the structure and function of human organs, tissue chips provide a model for predicting whether a drug, vaccine or biologic agent is safe in humans more quickly and effectively than current methods.
This first phase of Tissue Chips in Space includes five investigations. An investigation of immune system aging is planned for launch on the SpaceX CRS-16 flight, scheduled for mid-November. The other four, scheduled to launch on subsequent flights, include lung host defense, the blood-brain barrier, musculoskeletal disease and kidney function. This phase tests the effects of microgravity on the tissue chips and demonstrates the capability of the automated system.
All five investigations make a second flight about 18 months later to confirm use of the model, such as testing potential drugs on the particular organs. Four more projects are scheduled for launch in summer 2020, including two on engineered heart tissue to understand cardiovascular health, one on muscle wasting and another on gut inflammation.
Ultimately, the technology could allow astronauts going into space to take along personalized chips that could be used to monitor changes in their bodies and to test possible countermeasures and therapies. That would be a major leap forward in keeping astronauts healthy on missions to deep space!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Can you guess the subject of each of these pictures? How many will you get right? Test your friends and family to see who knows their space photos the best.
1. Mars. You might be surprised, but this image taken by our Mars Reconnaissance Orbiter is of a light-toned deposit on the Martian surface. Some shapes in the terrain suggest erosion by a fluid moving north to south.
2. Earth. This image taken by our Earth Observing-1 satellite shows Lake Frome in central Australia. In this image, the salt lake appears bone-dry, filled with off-white sediment. This area of Australia receives 149 to 216 millimeters of rainfall a year on average, and the basins pass most of their time as saltpans.
3. Mercury. Our MESSENGER spacecraft captured this image of Mercury during a fly by in October 2008. It shows previously uncharted regions of the planet that have large craters with an internal smoothness similar to Earth’s own moon. It is thought that these craters were to have been flooded by lava flows that are old but not as old as the surrounding more highly cratered surface.
4. Earth. Surprisingly, this image take from the International Space Station shows the western half of the Arabian peninsula in Saudi Arabia. It not only contains large expanses of sand and gravel, but extensive lava fields known as haraat.
5. Saturn. Although this pattern of waves is similar to those seen on Jupiter, this is actually a picture of Saturn. The pattern of an iconic surfer’s wave, has been observed in many places all over the universe, including at the edges of Earth’s magnetic environment.
6. Mars. This image was taken by our Mars Reconnaissance Orbiter and shows dunes of sand-sized materials that have been trapped on the floors of many Martian craters. The dunes are linear, thought to be due to shifting wind directions.
7. Left: Europa. Right: Frying Pan. Europa is one of Jupiter’s moons, and is about the same size as Earth’s moon.
8. Ceres. This image taken by our Dawn spacecraft shows an intriguing mountain on dwarf planet Ceres protruding from a relatively smooth area.
9. Earth. This image of the Bazman volcano is located in a remote region of souther Iran. While the volcano has the classic cone shape of a stratovolcano, it is also heavily dissected by channels that extend downwards from the summit.
10. Earth. This image of the Great Sandy Desert in northwest Australia shows a variety of dune forms across the region. The photo was taken by the Expedition 35 crew from the International Space Station.
Make sure to follow us on Tumblr for your regular dose of space:http://nasa.tumblr.com
This nebula began forming about 10,000 years ago when a dying star started flinging material into space. When Sun-like stars exhaust their nuclear fuel, they become unstable and blast their outer layers of gas away into space (bad news for any planets in the area). This Hubble Space Telescope image shows a snapshot of the unworldly process.
Streams of high-energy ultraviolet radiation cause the expelled material to glow, creating a beautiful planetary nebula — a term chosen for the similarity in appearance to the round disk of a planet when viewed through a small telescope.
The Eskimo Nebula got its nickname because it resembles a face surrounded by a fur parka. The “parka” is a disk of material embellished by a ring of comet-shaped objects with their tails streaming away from the central, dying star. In the middle of the nebula is a bubble of material that is being blown outward by the star’s intense “wind” of high-speed material.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Did you know we help farmers grow some of your favorite fruits, veggies and grains?
Our Earth-observing satellites track rainfall amounts, soil moisture, crop health, and more. On the ground, we partner with agencies and organizations around the world to help farmers use that data to care for their fields.
Here are a few ways we help put food on the table, from planting to harvest.
Did you plant seeds in science class to watch them sprout and grow? They all needed water, right? Our data helps farmers “see” how moist the soil is across large fields.
“When you’re not sure when to water your flowers or your garden, you can look at the soil or touch it with your hands. We are sort of ‘feeling’ the soil, sensing how much water is in the soil – from a satellite,
685 kilometers (408 miles) above Earth,” said John Bolten, the associate program manager of water resources for NASA’s Applied Sciences Program.
This spring, we worked with the U.S. Department of Agriculture and George Mason University to release Crop-CASMA, a tool that shows soil moisture and vegetation conditions for the United States. Able to see smaller areas – about the size of a couple of golf courses – the USDA uses Crop-CASMA to help update farmers on their state’s soil moisture, crop health and growing progress.
It’s dangerous being a seedling.
Heavy spring rains or summer storms can flood fields and drown growing plants. Dry spells and droughts can starve them of nutrients. Insects and hail can damage them. Farmers need to keep a close eye on plants during the spring and summer months. Our data and programs help them do that.
For example, in California, irrigation is essential for agriculture. California’s Central Valley annually produces more than 250 types of crops and is one of the most productive agricultural regions in the country – but it’s dry. Some parts only get 6 inches of rain per year.
To help, Landsat data powers CropManage – an app that tells farmers how long to irrigate their fields, based on soil conditions and evapotranspiration, or how much water plants are releasing into the atmosphere. The warmer and drier the atmosphere, the more plants “sweat” and lose water that needs to be replenished. Knowing how long to irrigate helps farmers conserve water and be more efficient. In years like 2021, intense droughts can make water management especially critical.
Harvest
Leading up to harvest, farmers need to know their expected yields – and profits.
GEOGLAM, or the Group on Earth Observations Global Agricultural Monitoring Initiative, is a partnership between NASA Harvest, USDA’s Foreign Agricultural Service (FAS) and other global agencies to track and report on crop conditions around the world.
USDA FAS is one of the main users of a soil moisture measurement product developed by Bolten and his team at our NASA Goddard Space Flight Center to drive their crop forecasting system.
If you’re interested in more ways we support agriculture, stay tuned over the next few weeks to learn more about how satellites (and scientists) help put snacks on your table!
Make sure to follow us on Tumblr for your regular dose of space!
Marcos Berrios is from Guaynabo, Puerto Rico, and received his Ph.D. in aeronautics and astronautics from Stanford. Berríos has logged over 1,400 hours of flight time in over 20 different aircraft. https://go.nasa.gov/49DEAAt
Make sure to follow us on Tumblr for your regular dose of space!
While the first exoplanets—planets beyond our solar system—were discovered using ground-based telescopes, the view was blurry at best. Clouds, moisture, and jittering air molecules all got in the way, limiting what we could learn about these distant worlds.
A superhero team of space telescopes has been working tirelessly to discover exoplanets and unveil their secrets. Now, a new superhero has joined the team—the James Webb Space Telescope. What will it find? Credit: NASA/JPL-Caltech
To capture finer details—detecting atmospheres on small, rocky planets like Earth, for instance, to seek potential signs of habitability—astronomers knew they needed what we might call “superhero” space telescopes, each with its own special power to explore our universe. Over the past few decades, a team of now-legendary space telescopes answered the call: Hubble, Chandra, Spitzer, Kepler, and TESS.
Much like scientists, space telescopes don't work alone. Hubble observes in visible light—with some special features (superpowers?)—Chandra has X-ray vision, and TESS discovers planets by looking for tiny dips in the brightness of stars.
Kepler and Spitzer are now retired, but we're still making discoveries in the space telescopes' data. Legends! All were used to tell us more about exoplanets. Spitzer saw beyond visible light into the infrared and was able to make exoplanet weather maps! Kepler discovered more than 3,000 exoplanets.
Three space telescopes studied one fascinating planet and told us different things. Hubble found that the atmosphere of HD 189733 b is a deep blue. Spitzer estimated its temperature at 1,700 degrees Fahrenheit (935 degrees Celsius). Chandra, measuring the planet’s transit using X-rays from its star, showed that the gas giant’s atmosphere is distended by evaporation.
Adding the James Webb Space Telescope to the superhero team will make our science stronger. Its infrared views in increased ranges will make the previously unseen visible.
Soon, Webb will usher in a new era in understanding exoplanets. What will Webb discover when it studies HD 189733 b? We can’t wait to find out! Super, indeed.
Make sure to follow us on Tumblr for your regular dose of space!
Is there such thing as a ‘gentle black hole’ (as in Interstellar) that would one day be a candidate for sending probes? Or is it a lost cause?
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts