Want to watch me make a big splash? Tuesday we will doing a water drop test NASA Langley Recearch Center’s gantry. This is the second of four tests, which are aimed to help our team prepare for Artemis II, NASA’s first Artemis mission with crew. Watch here: https://www.nasa.gov/press-release/nasa-to-host-virtual-viewing-of-orion-spacecraft-drop-test
Quadrantid Meteor Shower
The Quadrantid meteor shower on Jan. 4 will either sizzle or fizzle for observers in the U.S. The shower may favor the U.S. or it could favor Europe depending on which prediction turns out to be correct. For viewing in the United States, observers should start at 3 a.m. EST. The peak should last about two hours with rates of 120 meteors per hour predicted in areas with a dark sky.
Comet Catalina
In the middle of the month, midnight to predawn will be primetime for viewing Comet Catalina. It should be visible with binoculars if you have a dark sky, but a telescope would be ideal. Between the 14th and 17th the comet will pass by two stunning galaxies: M51, the whirlpool galaxy and M101, a fainter spiral galaxy.
Constellation Orion
Winter is also the best time to view the constellation Orion in the southeastern sky. Even in the city, you’ll see that it’s stars have different colors. Not telescope needed, just look up a few hours after sunset! The colorful stars of Orion are part of the winter circle of stars.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Our Human Research Program is conducting a Twins Study on retired twin astronauts Scott and Mark Kelly. The study began during Scott Kelly’s One-Year Mission, which encompassed International Space Station Expeditions 43, 44, 45 and 46.
Now that Scott has returned from space, researchers are integrating data as well as taking measurements on Earth from the twins. This is the first time we have conducted Omics research on identical twins. Omics is a broad area of biological and molecular studies that, in general, means the study of the entire complement of biomolecules, like proteins; metabolites or genes.
Comparing various types of molecular information on identical individuals while one undergoes unique stresses, follows a defined diet, and resides in microgravity to one who resides on Earth, with gravity, should yield interesting results. It is hoped one day that all individuals will have access to having their Omics profiles done. This is a first step towards personalizing medicine for astronauts and hopefully for the rest of us.
For background, check out NASA’s Omics video series at https://www.nasa.gov/twins-study.
Kjell Lindgren, M.D., NASA astronaut, Expedition 44/45 Flight Engineer and medical officer
Susan M. Bailey, Ph.D., Twins Study Principal Investigator, Professor, Radiation Cancer Biology & Oncology, Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University
Christopher E. Mason, Ph.D., Twins Study Principal Investigator, WorldQuant Foundations Scholar, Affiliate Fellow of Genomics, Ethics, and Law, ISP, Yale Law School, Associate Professor, Department of Physiology and Biophysics, Weill Cornell Medicine
Brinda Rana, Ph.D., Associate Professor, Department of Psychiatry, University of California San Diego School of Medicine
Michael P. Snyder, Ph.D., M.D., FACS, Twins Study Principal Investigator, Stanford W. Ascherman, Professor in Genetics, Chair, Dept. of Genetics, Director, Center for Genomics and Personalized Medicine, Stanford School of Medicine
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
While the first exoplanets—planets beyond our solar system—were discovered using ground-based telescopes, the view was blurry at best. Clouds, moisture, and jittering air molecules all got in the way, limiting what we could learn about these distant worlds.
A superhero team of space telescopes has been working tirelessly to discover exoplanets and unveil their secrets. Now, a new superhero has joined the team—the James Webb Space Telescope. What will it find? Credit: NASA/JPL-Caltech
To capture finer details—detecting atmospheres on small, rocky planets like Earth, for instance, to seek potential signs of habitability—astronomers knew they needed what we might call “superhero” space telescopes, each with its own special power to explore our universe. Over the past few decades, a team of now-legendary space telescopes answered the call: Hubble, Chandra, Spitzer, Kepler, and TESS.
Much like scientists, space telescopes don't work alone. Hubble observes in visible light—with some special features (superpowers?)—Chandra has X-ray vision, and TESS discovers planets by looking for tiny dips in the brightness of stars.
Kepler and Spitzer are now retired, but we're still making discoveries in the space telescopes' data. Legends! All were used to tell us more about exoplanets. Spitzer saw beyond visible light into the infrared and was able to make exoplanet weather maps! Kepler discovered more than 3,000 exoplanets.
Three space telescopes studied one fascinating planet and told us different things. Hubble found that the atmosphere of HD 189733 b is a deep blue. Spitzer estimated its temperature at 1,700 degrees Fahrenheit (935 degrees Celsius). Chandra, measuring the planet’s transit using X-rays from its star, showed that the gas giant’s atmosphere is distended by evaporation.
Adding the James Webb Space Telescope to the superhero team will make our science stronger. Its infrared views in increased ranges will make the previously unseen visible.
Soon, Webb will usher in a new era in understanding exoplanets. What will Webb discover when it studies HD 189733 b? We can’t wait to find out! Super, indeed.
Make sure to follow us on Tumblr for your regular dose of space!
What specific area of space research most excites you? Could be something being explored currently, or something you would like to see work done on in the future.
My twin sister worked on genetics in graduate school, and she continues to research ideas in genetics. She comes up with a lot of great ideas for what we can study in space, especially now since genetics is a focus on the space station. I’m looking forward to continuing with the genetics experiments and seeing what we learn.
Our Curiosity Mars rover recently drilled into the Martian bedrock on Mount Sharp and uncovered the highest amounts of clay minerals ever seen during the mission. The two pieces of rock that the rover targeted are nicknamed "Aberlady" and "Kilmarie" and they appear in a new selfie taken by the rover on May 12, 2019, the 2,405th Martian day, or sol, of the mission.
On April 6, 2019, Curiosity drilled the first piece of bedrock called Aberlady, revealing the clay cache. So, what’s so interesting about clay? Clay minerals usually form in water, an ingredient essential to life. All along its 7-year journey, Curiosity has discovered clay minerals in mudstones that formed as river sediment settled within ancient lakes nearly 3.5 billion years ago. As with all water on Mars, the lakes eventually dried up.
But Curiosity does more than just look at the ground. Even with all the drilling and analyzing, Curiosity took time on May 7, 2019 and May 12, 2019 to gaze at the clouds drifting over the Martian surface. Observing clouds can help scientists calculate wind speeds on the Red Planet.
For more on Curiosity and our other Mars missions like InSight, visit: https://mars.nasa.gov.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Did Mars once have life? To help answer that question, an international team of scientists created an incredibly powerful miniature chemistry laboratory, set to ride on the next Mars rover.
The instrument, called the Mars Organic Molecule Analyzer Mass Spectrometer (MOMA-MS), will form a key part of the ExoMars Rover, a joint mission between the European Space Agency (ESA) and Roscosmos. A mass spectrometer is crucial to send to Mars because it reveals the elements that can be found there. A Martian mass spectrometer takes a sample, typically of powdered rock, and distinguishes the different elements in the sample based on their mass.
After 8 years of designing, building, and testing, NASA scientists and engineers from NASA’s Goddard Space Flight Center said goodbye to their tiny chemistry lab and shipped it to Italy in a big pink box. Building a tiny instrument capable of conducting chemical analysis is difficult in any setting, but designing one that has to launch on a huge rocket, fly through the vacuum of space, and then operate on a planet with entirely different pressure and temperature systems? That’s herculean. And once on Mars, MOMA has a very important job to do. NASA Goddard Center Director Chris Scolese said, “This is the first intended life-detecting instrument that we have sent to Mars since Viking.”
The MOMA instrument will be capable of detecting a wide variety of organic molecules. Organic compounds are commonly associated with life, although they can be created by non-biological processes as well. Organic molecules contain carbon and hydrogen, and can include oxygen, nitrogen, and other elements.
To find these molecules on Mars, the MOMA team had to take instruments that would normally occupy a couple of workbenches in a chemistry lab and shrink them down to roughly the size of a toaster oven so they would be practical to install on a rover.
MOMA-MS, the mass spectrometer on the ExoMars rover, will build on the accomplishments from the Sample Analysis at Mars (SAM), an instrument suite on the Curiosity rover that includes a mass spectrometer. SAM collects and analyzes samples from just below the surface of Mars while ExoMars will be the first to explore deep beneath the surface, with a drill capable of taking samples from as deep as two meters (over six feet). This is important because Mars’s thin atmosphere and spotty magnetic field offer little protection from space radiation, which can gradually destroy organic molecules exposed on the surface. However, Martian sediment is an effective shield, and the team expects to find greater abundances of organic molecules in samples from beneath the surface.
On completion of the instrument, MOMA Project Scientist Will Brinckerhoff praised his colleagues, telling them, “You have had the right balance of skepticism, optimism, and ambition. Seeing this come together has made me want to do my best.”
In addition to the launch of the ESA and Roscosmos ExoMars Rover, in 2020, NASA plans to launch the Mars 2020 Rover, to search for signs of past microbial life. We are all looking forward to seeing what these two missions will find when they arrive on our neighboring planet.
Learn more about MOMA HERE.
Learn more about ExoMars HERE.
Follow @NASASolarSystem on Twitter for more about our missions to other planets.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Below you will find a real journal entry, written in space, by NASA astronaut Scott Tingle.
To read more entires from this series, visit our Space Blogs on Tumblr.
I did an interview with some students today, and I was asked a two-part question by one of the students. He asked, “What is the most exciting thing about being in space, and how did you keep yourself motivated to get there?”
I answered, “When you were very young, did you ever dream or wish you could fly? We all know it’s impossible, right? Imagine waking up one day and finding out you actually can fly! THAT is exciting! Now consider the contrary thought, what if you grew up and realized that flying wasn’t possible for humans, and you were at peace with this reality, and at peace shedding your childhood dream of flying? You will have several crossroads in your life, and you will have to decide which of these people you want to be. I too am amazed that I had the staying power to continue to dream as I did when I was a child. Words cannot describe how I feel when I fly through the International Space Station every day.”
Find more ‘Captain’s Log’ entries HERE.
Follow NASA astronaut Scott Tingle on Instagram and Twitter.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Part of the appeal of Thanksgiving is how easily we settle into the familiar: cherished foods, friends and family, and favorite activities like football, puzzles or board games. As anyone who has spent Thanksgiving with someone else’s traditions knows, those familiar things can take on seemingly unusual forms. That’s especially true when you’re 200 miles up in space.
Holidays in space weren’t very common early in the program, but as astronauts start the 20th year of continuous habitation they will also be celebrating the 20th consecutive Thanksgiving in orbit. As it turns out, everything’s the same, but different.
Early in the space program, astronauts didn’t have much choice about their meals. A turkey dinner with all the trimmings was as much a pipe dream in the early 1960s as space travel had been a few decades earlier. Food had to be able to stay fresh, or at least edible, from the time it was packed until the end of the mission, which might be several weeks. It couldn’t be bulky or heavy, but it had to contain all the nutrition an astronaut would need. It had to be easily contained, so crumbs or droplets wouldn’t escape the container and get into the spacecraft instrumentation. For the first flights, that meant a lot of food in tubes or in small bite-sized pieces.
Examples of food from the Mercury program
Maybe you rake leaves to start the day or straighten up the house for guests. Perhaps you’re the cook. Just like you, astronauts sometimes have to earn their Thanksgiving dinner. In 1974, two members of the Skylab 4 crew started their day with a six-and-a-half hour spacewalk, replacing film canisters mounted outside the spacecraft and deploying an experiment package.
After the spacewalk, the crew could at least “sit down” for a meal together that included food they didn’t have to eat directly from a bag, tube or pouch. In the spacecraft’s “ward room”, a station held three trays of food selected for the astronauts. The trays themselves kept the food warm.
A food tray similar to the ones astronauts used aboard Skylab, showing food, utensils and clean wipes. The tray itself warmed the food.
The ward room aboard Skylab showing the warming trays in use. The Skylab 4 crew ate Thanksgiving dinner there in 1974.
It can’t be all mashed potatoes and pie. There have to be some greens. NASA has that covered with VEGGIE, the ongoing experiment to raise food crops aboard the space station. Though the current crop won’t necessarily be on the Thanksgiving menu, astronauts have already harvested and eaten “space lettuce”. Researchers hope to be growing peppers aboard the space station in 2020.
Astronaut Kjell Lindgren enjoys lettuce grown and harvested aboard the International Space Station.
Space station crews have been able to watch football on Thanksgiving thanks to live feeds from Mission Control. Unfortunately their choices of activities can be limited by their location. That long walk around the neighborhood to shake off the turkey coma? Not happening.
Football in space. It’s a thing.
No matter how you plan, there’s a chance something’s going to go wrong, perhaps badly. It happened aboard the Space Shuttle on Thanksgiving 1989. Flight Director Wayne Hale tells of plumbing problem that left Commander Fred Gregory indisposed and vacuum-suctioned to a particular seat aboard the spacecraft.
This is not the seat from which the mission commander flies the Space Shuttle.
If you can’t get enough of space food, tune into this episode of “Houston, We Have a Podcast” and explore the delicious science of astronaut mealtime.
And whether you’re eating like a king or one of our astronauts currently living and working in space, we wish everybody a happy and safe Thanksgiving!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We’re launching Landsat 9 — the ninth in a series of satellite missions from NASA and the U.S. Geological Survey (USGS) that have been collecting images of our planet for almost 50 years. Follow along as we count down to launch!
A normal launch countdown starts at 10, but for Landsat 9, we’re jumping in with L-9!
There are 9 million images in the USGS/NASA Landsat archive! They’re all available for free, for use by scientists, data managers, and anyone else who’s interested. You can even download them!
Landsat 9 won’t be orbiting alone. Working together, Landsat 9 and Landsat 8 will completely image Earth every 8 days! This helps us track changes on the planet’s surface as they happen in near-real-time.
Landsat sees all 7 continents! From Antarctic ice to growing cities to changing forests, Landsat measures land — and coastal regions — all around the globe.
Working in space is really hard. Landsat 6 never made it to orbit, an important reminder that failures can be opportunities to learn and grow. Shortly after the unsuccessful launch, engineers got to work on Landsat 7, which is still collecting data today — 22 years later.
We have 5 decades of Landsat observations, the longest continuous record of Earth’s land surfaces in existence! While building the original Landsat in the 1970s, it would have been hard to imagine that this mission would still be providing crucial data about our planet today.
For each color band collected, Landsat 9 will see 4 times the shades of light as the previous Landsat mission! With more than 16,000 different intensities detected, Landsat 9 will be able to see crucial details on our planet’s surface.
Our eyes detect 3 colors of light: red, green, and blue — and Landsat does too! But Landsat 9 also detects wavelengths that can be combined to measure things our eyes can’t, like crop stress, coral reef health, fires, and more.
There are 2 instruments on Landsat 9! The Operational Land Imager 2 collects light, and works kind of like our eyes — or cameras — to make data-rich images. The Thermal Infrared Sensor 2 measures temperature, helping monitor plant health, fires, and more.
The Landsat program is the result of 1 amazing partnership! For more than 50 years, we’ve worked with the U.S. Geological Survey to design, build, launch, and manage Landsat satellites.
Two agencies working together makes for the longest continuous record of Earth’s surfaces. Now, let’s launch this satellite!
Make sure to follow us on Tumblr for your regular dose of space!
NASA astronaut Nick Hague will be taking your questions in an Answer Time session on Thursday, January 16 from 12pm - 1pm ET here on NASA’s Tumblr! Find out what it’s like to live and work 254 miles above our planet’s surface. Make sure to ask your question now by visiting http://nasa.tumblr.com/ask!
Nick Hague was selected as one of eight members of the 21st NASA Astronaut class in 2013. Hague was the first astronaut from his class to be assigned to a mission which launched on October 11, 2018. Unfortunately, he and his crewmate Alexey Ovchinin, of the Russian space agency Roscosmos, were forced to abort the mission when a rocket booster experienced a malfunction shortly after the launch of their Soyuz MS-10. The aborted spacecraft landed safely.
His first flight to the International Space Station was from March 2019 through October 2019 as a a part of the Expeditions 59 and 60 crew. Together, the crew conducted hundreds of experiments, including investigations into devices that mimic the structure and function of human organs, free-flying robots and an instrument to measure Earth’s distribution of carbon dioxide. While at the International Space Station, Hague conducted three spacewalks, totaling 19 hours and 56 minutes with a total of 203 days in space.
Hague was awarded the Order of Courage from the Russian Federation for his actions during the Expedition 57/58 launch abort.
Hague was selected for the Air Force Fellows program where he was assigned as a member of the personal staff in the U.S. Senate, advising on matters of national defense and foreign policy.
He was a top flight test engineer in the U.S. Air Force.
He deployed five months to Iraq in support of Iraqi Freedom, conducting experimental airborne reconnaissance.
He enjoys exercise, flying, snow skiing and scuba.
Follow Nick Hague on Twitter at @AstroHague and follow NASA on Tumblr for your regular dose of space.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts