Astrobiologists study the origin, evolution, and distribution of life in the universe. This includes identifying evidence left behind by life that once survived on the ancient Earth, and extends to the search for life beyond our planet.
When looking for signs of life on other worlds, what are they looking for?
Things called biosignatures. For example, when you sign a piece of paper, your signature is evidence of your existence. Similarly, biosignatures are anything that can prove that life was once, or is, present in an environment.
If we were very very lucky, we might spot something we know is life with a powerful telescope or receive a "phone call" or radio signal from alien civilizations. Those types of biosignatures would be obvious. But they would only let us identify advanced life.
For most of Earth’s history (billions of years), single-celled life like bacteria and archaea have been around. Humans have only been making radio transmissions for hundreds of years. So we have a better chance of finding life if we look for signs that have been around for very long periods of time.
Patterns in ancient rocks that were created by life are a great example. That can be anything like a dinosaur footprint or structures built by microorganisms, like stromatolites.
Molecules can also be biosignatures, like DNA left behind for detectives to discover. But DNA doesn’t last very long on its own in most environments, so other molecules like lipids (like natural oils, wax, and fat) might be a better choice if you are looking for signatures of life from millions (or billions) of years ago.
Even the balance of gases in a planet’s atmosphere can be a sign of past or present life. On Earth, biology plays a major role in maintaining the delicate composition of gases like nitrogen, oxygen, and carbon dioxide in the air that we breathe.
These are just a few examples of signs astrobiologists look for when searching for life amongst the stars! Research into these biosignatures inform many of our biggest missions, from observatories like the Hubble Space Telescope and the Webb Space Telescope to our Mars Sample Return endeavor.
Want to learn more about the search for life? Check out the latest issue of our comic-book style graphic history novel, Astrobiology: The Story of our Search for Life in the Universe. This new chapter is all about biosignatures.
Explore life in the universe with us by following NASA Astrobiology on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space!
This all-sky mosaic was constructed from 912 Transiting Exoplanet Survey Satellite (TESS) images. Prominent features include the Milky Way, a glowing arc that represents the bright central plane of our galaxy, and the Large and Small Magellanic Clouds – satellite galaxies of our own located, respectively, 160,000 and 200,000 light-years away. In the northern sky, look for the small, oblong shape of the Andromeda galaxy (M 31), the closest big spiral galaxy, located 2.5 million light-years away. The black regions are areas of sky that TESS didn’t image. Credit: NASA/MIT/TESS and Ethan Kruse (University of Maryland College Park)
On April 18, 2018, we launched the Transiting Exoplanet Survey Satellite, better known as TESS. It was designed to search for planets beyond our solar system – exoplanets – and to discover worlds for our James Webb Space Telescope, which launched three years later, to further explore. TESS images sections of sky, one hemisphere at a time. When we put all the images together, we get a great look at Earth’s sky!
In its five years in space, TESS has discovered 326 planets and more than 4,300 planet candidates. Along the way, the spacecraft has observed a plethora of other objects in space, including watching as a black hole devoured a star and seeing six stars dancing in space. Here are some notable results from TESS so far:
During its first five years in space, our Transiting Exoplanet Survey Satellite has discovered exoplanets and identified worlds that can be further explored by the James Webb Space Telescope. Credit: NASA/JPL-Caltech
1. TESS’ first discovery was a world called Pi Mensae c. It orbits the star Pi Mensae, about 60 light-years away from Earth and visible to the unaided eye in the Southern Hemisphere. This discovery kicked off NASA's new era of planet hunting.
2. Studying planets often helps us learn about stars too! Data from TESS & Spitzer helped scientists detect a planet around the young, flaring star AU Mic, providing a unique way to study how planets form, evolve, and interact with active stars.
Located less than 32 light-years from Earth, AU Microscopii is among the youngest planetary systems ever observed by astronomers, and its star throws vicious temper tantrums. This devilish young system holds planet AU Mic b captive inside a looming disk of ghostly dust and ceaselessly torments it with deadly blasts of X-rays and other radiation, thwarting any chance of life… as we know it! Beware! There is no escaping the stellar fury of this system. The monstrous flares of AU Mic will have you begging for eternal darkness. Credit: NASA/JPL-Caltech
3. In addition to finding exoplanets on its own, TESS serves as a pathfinder for the James Webb Space Telescope. TESS discovered the rocky world LHS 3844 b, but Webb will tell us more about its composition. Our telescopes, much like our scientists, work together.
4. Though TESS may be a planet-hunter, it also helps us study black holes! In 2019, TESS saw a ‘‘tidal disruption event,’’ otherwise known as a black hole shredding a star.
When a star strays too close to a black hole, intense tides break it apart into a stream of gas. The tail of the stream escapes the system, while the rest of it swings back around, surrounding the black hole with a disk of debris. Credit: NASA's Goddard Space Flight Center
5. In 2020, TESS discovered its first Earth-size world in the habitable zone of its star – the distance from a star at which liquid water could exist on a planet’s surface. Earlier this year, a second rocky planet was discovered in the system.
You can see the exoplanets that orbit the star TOI 700 moving within two marked habitable zones, a conservative habitable zone, and an optimistic habitable zone. Planet d orbits within the conservative habitable zone, while planet e moves within an optimistic habitable zone, the range of distances from a star where liquid surface water could be present at some point in a planet’s history. Credit: NASA Goddard Space Flight Center
6. Astronomers used TESS to find a six-star system where all stars undergo eclipses. Three binary pairs orbit each other, and, in turn, the pairs are engaged in an elaborate gravitational dance in a cosmic ballroom 1,900 light-years away in the constellation Eridanus.
7. Thanks to TESS, we learned that Delta Scuti stars pulse to the beat of their own drummer. Most seem to oscillate randomly, but we now know HD 31901 taps out a beat that merges 55 pulsation patterns.
Sound waves bouncing around inside a star cause it to expand and contract, which results in detectable brightness changes. This animation depicts one type of Delta Scuti pulsation — called a radial mode — that is driven by waves (blue arrows) traveling between the star's core and surface. In reality, a star may pulsate in many different modes, creating complicated patterns that enable scientists to learn about its interior. Credit: NASA’s Goddard Space Flight Center
8. Last is a galaxy that flares like clockwork! With TESS and Swift, astronomers identified the most predictably and frequently flaring active galaxy yet. ASASSN-14ko, which is 570 million light-years away, brightens every 114 days!
Make sure to follow us on Tumblr for your regular dose of space!
Today is College Signing Day and we’re working with the White House to celebrate all graduating seniors and inspire more young people to Reach Higher and enroll in higher education.
Additionally, choosing a degree within a STEM (Science, Math, Engineering and Technology) field enables the United States to remain the global economic and technological leader. We feel that it’s our duty to help inspire the next generation of scientists, technologists, engineers and astronauts.
It’s important that each and every student feels empowered and equipped with the knowledge to solve tough problems, evaluate evidence and analyze information. These are all skills students can learn through studying a subjects in STEM.
College is one of the stepping stones to many careers, including becoming an astronaut! Here are a few of our astronauts on their college graduation day, along with their astronaut portrait.
Undergraduate: California Polytechnic State University Graduate: Air University and Naval Postgraduate School Astronaut Class: 2013
Undergraduate: Rensselaer Polytechnic Institute Graduate: Johns hopkins University Astronaut Class: 2009
Undergraduate: Davidson College Graduate: University of Virginia, Wake Forest University and University of Texas medical Branch Astronaut Class: 2004
Undergraduate: University of North Dakota Graduate: University of Texas at Austin Astronaut Class: 2000
Undergraduate: Washington University Graduate: California Institute of Technology Astronaut Class: 2000
Undergraduate: Iowa Wesleyan College Graduate: Rice University Astronaut Class: 1996
Undergraduate: University of California Graduate: University of Arizona Astronaut Class: 2004
Undergraduate: University of California, Berkeley Graduate: University of Houston Astronaut Class: 1996
Here, Administrator Bolden wears the jersey of Keenan Reynolds, a scholar athlete who graduates from the Naval Academy this year. His jersey is on its way to the college football hall of fame. Bolden holds a drawing of himself as a midshipman in the Navy.
Deputy Administrator Dava Newman sports her college shirt, along with Lisa Guerra, Technical Assistant to the Associate Administrator. Both women studied aerospace engineering at Notre Dame.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Dreaming of going to space? – Astronaut Victor Glover has you covered.
In his first video from space, take a look at our home through the window of SpaceX’s Crew Dragon “Resilience” spacecraft. Victor arrived to the International Space Station alongside his fellow Crew-1 astronauts on Nov. 16, 2020.
Follow his Instagram account HERE to stay up-to-date on station life and for more behind-the-scenes content like this.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
It’s Thanksgiving, which means that you’re probably thinking about food right now. And here at NASA, we have to think about food very seriously when we explore space!
Like for you on Earth, nutrition plays a key role in maintaining the health and optimal performance of the astronauts. The Space Food Systems team is required to meet the nutritional needs of each crew member while adhering to the requirements of limited storage space, limited preparation options, and the difficulties of eating without gravity.
Good food is necessary being comfortable on a mission a long way from home — especially for crewmembers who are on board for many months at a time. It’s important that the astronauts like the food they’re eating everyday, even given the preparation constraints!
The early space programs were groundbreaking in a lot of ways — but not when it came to food. Like today, crumbs had to be prevented from scattering in microgravity and interfering with the instruments. Mercury astronauts had to endure bite-sized cubes, freeze-dried powders, and semi-liquids stuffed into aluminum tubes. The freeze-dried food were hard to rehydrate, squeezing the tubes was understandable unappetizing, and the food was generally considered to be, like spaceflight, a test of endurance.
However, over the years, packaging improved, which in turn enhanced food quality and choices. The Apollo astronauts were the first to have hot water, which made rehydrating foods easier and improved the food’s taste. And even the Space Shuttle astronauts had opportunities to design their own menus and choose foods commercially available on grocery store shelves.
Nowadays, astronauts on the International Space Station have the opportunity to sample a variety of foods and beverages prepared by the Space Food Systems team and decide which ones they prefer. They can add water to rehydratable products or eat products that are ready to eat off the shelf.
All the cooking and preparation has been done for them ahead of time because 1) they don’t have room for a kitchen to cook on the space station 2) they don’t have time to cook! The crewmembers are extremely occupied with station maintenance as well as scientific research on board, so meal times have to be streamlined as much as possible.
Instead of going grocery shopping, bulk overwrap bags (BOBs!) are packed into cargo transfer bags for delivery to the space station. Meal based packaging allows the astronauts to have entrees, side dishes, snacks, and desserts to choose from.
The perception of taste changes in space. In microgravity, astronauts experience a fluid shift in their bodies, so the sensation is similar to eating with a headcold. The taste is muted so crewmembers prefer spicy foods or food with condiments to enhance the flavor.
Growing plants aboard the space station provides a unique opportunity to study how plants adapt to microgravity. Plants may serve as a food source for long term missions, so it’s critical to understand how spaceflight affects plant growth. Plus, having fresh food available in space can have a positive impact on astronauts’ moods!
Since 2002, the Lada greenhouse has been used to perform almost continuous plant growth experiments on the station. We have grown a vast variety of plants, including thale cress, swiss chard, cabbage, lettuce, and mizuna.
And in 2015, Expedition 44 members became the first American astronauts to eat plants grown in space when they munched on their harvest of Red Romaine.
To give you a clear idea of how diverse the selection is for astronauts on board the space station, two earthlings gave the astronaut menu a try for a full week. Besides mentioning once that hot sauce was needed, they fared pretty well! (The shrimp cocktail was a favorite.)
Not only has our space food improved, but so has our ability measure food production on Earth. Weather that is too dry, too wet, too hot, or too cool can strongly affect a farmer’s ability to grow crops. We collaborated with the United States Agency for International Development to create a system for crop yield prediction based on satellite data: the GEOGLAM Crop Monitor for Early Warning.
This map measures the health, or “greenness” of vegetation based on how much red or near-infrared light the leaves reflect. Healthy vegetation reflects more infrared light and less visible light than stressed vegetation. As you can see from the map, a severe drought spread across southern Mexico to Panama in June to August of this year.
The Crop Monitor compiles different types of crop condition indicators — such as temperature, precipitation, and soil moisture — and shares them with 14 national and international partners to inform relief efforts.
Space food has certainly come a long way from semi-liquids squeezed into aluminum tubes! This year, Expedition 57 crewmembers Commander Alexander Gerst and Flight Engineer Serena M. Auñón-Chancellor are looking forward to enjoying a Thanksgiving meal that probably sounds pretty familiar to you: turkey, stuffing, candied yams, and even spicy pound cakes!
If you can’t get enough of space food, tune into this episode of “Houston, We Have a Podcast” and explore the delicious science of astronaut mealtime with Takiyah Sirmons.
And whether you’re eating like a king or an astronaut, we wish everybody a happy and safe Thanksgiving!
In honor of the completion of our Nancy Grace Roman Space Telescope’s spacecraft — the vehicle that will maneuver the observatory to its place in space and enable it to function once there — we’re bringing you a space craft you can complete at home! Join us for a journey across the cosmos, starting right in your own pantry.
Ingredients:
1 5 oz. bottle clear glue
½ tablespoon baking soda
Food coloring
1 tablespoon contact lens solution
1 tablespoon glitter
Directions:
Pour the glue into a bowl.
Mix in the baking soda.
Add food coloring (we recommend blue, purple, black, or a combination).
Add contact lens solution and use your hands to work it through the slime. It will initially be very sticky! You can add a little extra contact lens solution to make it firmer and less goopy.
Add glitter a teaspoon at a time, using as much or as little as you like!
Did you know that most of your household ingredients are made of stardust? And so are you! Nearly every naturally occurring element was forged by living or dying stars.
Take the baking soda in this slime recipe, for example. It’s made up of sodium, hydrogen, carbon, and oxygen. The hydrogen was made during the big bang, right at the start of the universe. But the other three elements were created by dying stars. So when you show your friends your space-y slime, you can tell them it’s literally made of stardust!
Still feeling crafty? Try your hand at more pantry projects or these 3D and paper spacecraft models. If you’re eager for a more advanced space craft, check out these embroidery creations for inspiration! Or if you’re ready for a break, take a virtual tour of an interactive version of the Roman Space Telescope here.
Make sure to follow us on Tumblr for your regular dose of space!
When will we start seeing images from the James Webb telescope??
Our Curiosity Mars rover recently drilled into the Martian bedrock on Mount Sharp and uncovered the highest amounts of clay minerals ever seen during the mission. The two pieces of rock that the rover targeted are nicknamed "Aberlady" and "Kilmarie" and they appear in a new selfie taken by the rover on May 12, 2019, the 2,405th Martian day, or sol, of the mission.
On April 6, 2019, Curiosity drilled the first piece of bedrock called Aberlady, revealing the clay cache. So, what’s so interesting about clay? Clay minerals usually form in water, an ingredient essential to life. All along its 7-year journey, Curiosity has discovered clay minerals in mudstones that formed as river sediment settled within ancient lakes nearly 3.5 billion years ago. As with all water on Mars, the lakes eventually dried up.
But Curiosity does more than just look at the ground. Even with all the drilling and analyzing, Curiosity took time on May 7, 2019 and May 12, 2019 to gaze at the clouds drifting over the Martian surface. Observing clouds can help scientists calculate wind speeds on the Red Planet.
For more on Curiosity and our other Mars missions like InSight, visit: https://mars.nasa.gov.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
On Sept. 15, 2017, our Cassini spacecraft ended its epic exploration of Saturn with a planned dive into the planet’s atmosphere–sending back new science to the very last second. The spacecraft is gone, but the science continues!
New research emerging from the final orbits represents a huge leap forward in our understanding of the Saturn system -- especially the mysterious, never-before-explored region between the planet and its rings. Some preconceived ideas are turning out to be wrong while new questions are being raised. How did they form? What holds them in place? What are they made of?
Six teams of researchers are publishing their work Oct. 5 in the journal Science, based on findings from Cassini's Grand Finale. That's when, as the spacecraft was running out of fuel, the mission team steered Cassini spectacularly close to Saturn in 22 orbits before deliberately vaporizing it in a final plunge into the atmosphere in September 2017.
Knowing Cassini's days were numbered, its mission team went for gold. The spacecraft flew where it was never designed to fly. For the first time, it probed Saturn's magnetized environment, flew through icy, rocky ring particles and sniffed the atmosphere in the 1,200-mile-wide (2,000-kilometer-wide) gap between the rings and the cloud tops. Not only did the engineering push the spacecraft to its limits, the new findings illustrate how powerful and agile the instruments were.
Many more Grand Finale science results are to come, but today's highlights include:
Complex organic compounds embedded in water nanograins rain down from Saturn's rings into its upper atmosphere. Scientists saw water and silicates, but they were surprised to see also methane, ammonia, carbon monoxide, nitrogen and carbon dioxide. The composition of organics is different from that found on moon Enceladus – and also different from those on moon Titan, meaning there are at least three distinct reservoirs of organic molecules in the Saturn system.
For the first time, Cassini saw up close how rings interact with the planet and observed inner-ring particles and gases falling directly into the atmosphere. Some particles take on electric charges and spiral along magnetic-field lines, falling into Saturn at higher latitudes -- a phenomenon known as "ring rain." But scientists were surprised to see that others are dragged quickly into Saturn at the equator. And it's all falling out of the rings faster than scientists thought -- as much as 10,000 kg of material per second.
Scientists were surprised to see what the material looks like in the gap between the rings and Saturn's atmosphere. They knew that the particles throughout the rings ranged from large to small. They thought material in the gap would look the same. But the sampling showed mostly tiny, nanograin- and micron-sized particles, like smoke, telling us that some yet-unknown process is grinding up particles. What could it be? Future research into the final bits of data sent by Cassini may hold the answer.
Saturn and its rings are even more interconnected than scientists thought. Cassini revealed a previously unknown electric current system that connects the rings to the top of Saturn's atmosphere.
Scientists discovered a new radiation belt around Saturn, close to the planet and composed of energetic particles. They found that while the belt actually intersects with the innermost ring, the ring is so tenuous that it doesn’t block the belt from forming.
Unlike every other planet with a magnetic field in our Solar System, Saturn's magnetic field is almost completely aligned with its spin axis. Think of the planet and the magnetic field as completely separate things that are both spinning. Both have the same center point, but they each have their own axis about which they spin. But for Saturn the two axes are essentially the same – no other planet does that, and we did not think it was even possible for this to happen. This new data shows a magnetic-field tilt of less than 0.0095 degrees. (Earth's magnetic field is tilted 11 degrees from its spin axis.) According to everything scientists know about how planetary magnetic fields are generated, Saturn should not have one. It's a mystery physicists will be working to solve.
Cassini flew above Saturn's magnetic poles, directly sampling regions where radio emissions are generated. The findings more than doubled the number of reported crossings of radio sources from the planet, one of the few non-terrestrial locations where scientists have been able to study a mechanism believed to operate throughout the universe. How are these signals generated? That’s still a mystery researchers are looking to uncover.
For the Cassini mission, the science rolling out from Grand Finale orbits confirms that the calculated risk of diving into the gap -- skimming the upper atmosphere and skirting the edge of the inner rings -- was worthwhile.
Almost everything going on in that region turned out to be a surprise, which was the importance of going there, to explore a place we'd never been before. And the expedition really paid off!
Analysis of Cassini data from the spacecraft’s instruments will be ongoing for years to come, helping to paint a clearer picture of Saturn.
To read the papers published in Science, visit: URL to papers
To learn more about the ground-breaking Cassini mission and its 13 years at Saturn, visit: https://www.nasa.gov/mission_pages/cassini/main/index.html
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
What's Up for June? Saturn at its best! Plus, good views of Mars, Jupiter and Jupiter's moons continue from dusk to dawn.
You don't have to stay up late to see Jupiter, Mars and Saturn this month, because they're all visible soon after sunset. Jupiter is the brightest of the three, visible in the western sky all evening.
The four Galilean moons are easily visible in binoculars or telescopes. If you think you're seeing 5 moons on June 10th, you're not. One of them is a distant star in the constellation Leo.
For telescope viewers, the time near Mars' closest approach to Earth, May 30th this year, is the best time to try to see the two moons of Mars: Phobos and Deimos. It takes patience, very steady skies and good charts! Mars is still large and bright in early June, but it fades as speedy Earth, in its shorter orbit around the sun, passes it.
Saturn has been close to Mars recently. This month Saturn reaches opposition, when Saturn, Earth and the sun are in a straight line with Earth in the middle, providing the best and closest views of the ringed beauty and several of its moons. You'll be able to make out cloud bands on Saturn, in delicate shades of cream and butterscotch. They're fainter than the bands of Jupiter. Through a telescope you'll see Saturn's rings tilted about as wide as they get: 26 degrees.
You'll also have a ring-side view of the Cassini division, discovered by Giovanni Domenico Cassini, namesake of our Cassini spacecraft, orbiting Saturn since 2004 and continuing through September 2017. When you look at Saturn through a telescope, you can't help but see several of its 4 brightest moons, and maybe more. If you just see one, that's Titan, 50% larger than our own moon. A telescope can also reveal more moons, like Saturn's two-colored moon Iapetus. It takes 3 months to orbit Saturn, and it's fairly easy to see.
There's a bright comet visible this month, Comet PanSTARRS. It's best seen from the southern hemisphere, but it's also visible from the U.S. low in the morning sky. Comet PanSTARRS can be seen through a telescope near the beautiful Helix Nebula on June 4, but it is visible all month.
Watch the full June “What’s Up” video for more: https://youtu.be/M7RtIa9zBYA
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Operated by our Goddard Space Flight Center in Greenbelt, Maryland, this communications system enables all types of Earth-to-astronaut communication. The Space Network is a complex system of ground station terminals and satellites. The satellites, called ‘Tracking and Data Relay Satellites’ or TDRS, provide continuous communications for human spaceflight 24/7/365. The information this network relays includes astronaut communication with Mission Control in Houston, posting live video of spacewalks and live interviews with schools, even posting Tweets on Twitter and doing Facebook posts. The Space Network can even broadcast live 4K, ultra-HD video right from the station. You can now watch an astronaut eat a space taco in high definition. WHAT A TIME TO BE ALIVE!
Astronauts on the Space Station perform experiments on the station that will enable our Journey to Mars and other future human space missions. For example, astronaut Peggy Whitson works on a bone cell study that could lead to better preventative care or therapeutic treatments for people suffering bone loss as a result of bone diseases like osteopenia and osteoporosis, or for patients on prolonged bed rest. All that fantastic data is sent back to Earth via our Space Network for scientists around the world to analyze and build on.
The Space Network not only lets us communicate with the astronauts, it also tracks the ‘health’ of the spacecraft, be it the International Space Station where the astronauts are living, a cargo vehicle servicing the space station, or even, in the near future, crewed vehicles to other worlds. We deliver data on a spacecraft’s state of health, from power generation levels and avionics status to carbon dioxide and oxygen levels, and more to Mission Control 24/7/365.
The International Space Station Is pretty big, but space is bigger. The Space Network enables flight controllers on the ground to provide a GPS-type service for the Space Station, letting them track the exact location of the space station at all times as it orbits the Earth. It also allows us Earth-bound folk to get real-time text updates when the Space Station is flying overhead. If you want to track the station, sign up here: https://spotthestation.nasa.gov
Goddard’s Space Network also controls all the communications for all the missions that go to the space station. That includes command and telemetry services during launches, free flight, berthing and un-berthing to the station, as well as re-entry and landing back to Earth.
It’s also helping to test vehicles that will carry astronauts to other worlds. Currently, they are working with teams for our Space Launch System and commercial crew vehicles. The first flights for these vehicles will occur in 2018 and 2019, setting us on the road to Journey to Mars! This image shows the Orion capsule that will aid in our continuous march into space.
We’re continuing to grow! Watch out for the launch of a new TDRS spacecraft in August 2017! TDRS-M is coming. Check out more info here and join our countdown to TDRS launch: https://tdrs.gsfc.nasa.gov.
Explore the universe and discover our home planet with the official NASA Tumblr account
1K posts