NASA Inspires Your Crafty Creations For World Embroidery Day

NASA Inspires Your Crafty Creations for World Embroidery Day

It’s amazing what you can do with a little needle and thread! For #WorldEmbroideryDay, we asked what NASA imagery inspired you. You responded with a variety of embroidered creations, highlighting our different areas of study.

Here’s what we found:

Webb’s Carina Nebula

hThis embroidered image shows the Carina Nebula captured by the James Webb Space Telescope. The image is framed in black. At the center a circular piece of art appears outlined in white. At the top of the circle, the thread is dark blue on the left. As you travel down white stars appear in lighter shades of blue. In the middle threads turn to dark black, red and orange to signify the nebula’s gas-like structure.

Wendy Edwards, a project coordinator with Earth Science Data Systems at NASA, created this embroidered piece inspired by Webb’s Carina Nebula image. Captured in infrared light, this image revealed for the first time previously invisible areas of star birth. Credit: Wendy Edwards, NASA. Pattern credit: Clare Bray, Climbing Goat Designs

Wendy Edwards, a project coordinator with Earth Science Data Systems at NASA, first learned cross stitch in middle school where she had to pick rotating electives and cross stitch/embroidery was one of the options.  “When I look up to the stars and think about how incredibly, incomprehensibly big it is out there in the universe, I’m reminded that the universe isn’t ‘out there’ at all. We’re in it,” she said. Her latest piece focused on Webb’s image release of the Carina Nebula. The image showcased the telescope’s ability to peer through cosmic dust, shedding new light on how stars form.

Ocean Color Imagery: Exploring the North Caspian Sea

This image shows an embroidery piece inspired by NASA imagery. The background is white. In the middle, a brown frame appears holding an illustration of the Caspian Sea. To the bottom left, blue, green and light green sea appears showing water moving. To the top right, ice gouges are designed in brown and white.

Danielle Currie of Satellite Stitches created a piece inspired by the Caspian Sea, taken by NASA’s ocean color satellites. Credit: Danielle Currie/Satellite Stitches

Danielle Currie is an environmental professional who resides in New Brunswick, Canada. She began embroidering at the beginning of the Covid-19 pandemic as a hobby to take her mind off the stress of the unknown. Danielle’s piece is titled “46.69, 50.43,” named after the coordinates of the area of the northern Caspian Sea captured by LandSat8 in 2019.

This is an image of the Caspian Sea. To the left, light green and dark green swirls appear in the water. To the right, ice gouges appear in white and light brown. Credit: NASA

An image of the Caspian Sea captured by Landsat 8 in 2019. Credit: NASA

Two Hubble Images of the Pillars of Creation, 1995 and 2015

This embroidery piece shows the Pillars of Creation inspired by the Hubble Telescope. The design is on a vintage embroidery frame (circa 1905)  with brown yarn on each side. In the middle a white tapestry shows the galaxy. There are three towering tendrils of cosmic dust and gas sitting at the center of the piece, colored in red and white. On the outside, space is blue with stars bursting in red colors.  Credit: Melissa Cole, Star Stuff Stitching

Melissa Cole of Star Stuff Stitching created an embroidery piece based on the Hubble image Pillars of Creation released in 1995. Credit: Melissa Cole, Star Stuff Stitching

Melissa Cole is an award-winning fiber artist from Philadelphia, PA, USA, inspired by the beauty and vastness of the universe. They began creating their own cross stitch patterns at 14, while living with their grandparents in rural Michigan, using colored pencils and graph paper.  The Pillars of Creation (Eagle Nebula, M16), released by the Hubble Telescope in 1995 when Melissa was just 11 years old, captured the imagination of a young person in a rural, religious setting, with limited access to science education.

This artistic piece shows two images of the Pillars of Creation captured by the Hubble Space Telescope. To the left, the circular art piece is on a brown background. The nebula is blue and navy with small white stitches showing stars. In the center, there are three pillars that appear colored in dark red, yellow and light green.  The pillars look like arches and spires rising out of a desert landscape, but are filled with semi-transparent gas and dust, and ever changing. To the right is a closeup of one of the pillars. The image is colored in red, yellow and brown thread, felt and wool. In the middle, blue wool appears showing space. A white star appears in the upper left. Credit: Lauren Wright Vartanian, Neurons and Nebulas

Lauren Wright Vartanian of the shop Neurons and Nebulas created this piece inspired by the Hubble Space Telescope’s 2015 25th anniversary re-capture of the Pillars of Creation. Credit:  Lauren Wright Vartanian, Neurons and Nebulas

Lauren Wright Vartanian of Guelph, Ontario Canada considers herself a huge space nerd. She’s a multidisciplinary artist who took up hand sewing after the birth of her daughter. She’s currently working on the illustrations for a science themed alphabet book, made entirely out of textile art. It is being published by Firefly Books and comes out in the fall of 2024. Lauren said she was enamored by the original Pillars image released by Hubble in 1995. When Hubble released a higher resolution capture in 2015, she fell in love even further! This is her tribute to those well-known images.

James Webb Telescope Captures Pillars of Creation

This rectangular piece shows another embroidered interpretation of the Pillars of Creation captured by the Webb Telescope last year. The background is blue and black with white stars scattered from top to bottom. In the middle, three pillars appear in colors of red and yellow. The pillars, which lean to the right, continue downward to the left of the art piece. Credit: Darci Lenker of Darci Lenker Art

Darci Lenker of Darci Lenker Art, created a rectangular version of Webb’s Pillars of Creation. Credit:  Darci Lenker of Darci Lenker Art

Darci Lenker of Norman, Oklahoma started embroidery in college more than 20 years ago, but mainly only used it as an embellishment for her other fiber works. In 2015, she started a daily embroidery project where she planned to do one one-inch circle of embroidery every day for a year.  She did a collection of miniature thread painted galaxies and nebulas for Science Museum Oklahoma in 2019. Lenker said she had previously embroidered the Hubble Telescope’s image of Pillars of Creation and was excited to see the new Webb Telescope image of the same thing. Lenker could not wait to stitch the same piece with bolder, more vivid colors.

Milky Way

This image shows an illustration of the Milky Way Galaxy. The round frame is black and circular. As you move inward, a white dotted pattern appears. Continuing to the center, a black background appears with white dots showing stars.  Five rings appear in a circular motion colored in threads of blue white and red. The center of the Milky Way Galaxy is white and oval shaped. Credit: Darci Lenker/Darci Lenker Art

Darci Lenker of Darci Lenker Art was inspired by NASA’s imaging of the Milky Way Galaxy. Credit: Darci Lenker

In this piece, Lenker became inspired by the Milky Way Galaxy, which is organized into spiral arms of giant stars that illuminate interstellar gas and dust. The Sun is in a finger called the Orion Spur.

The Cosmic Microwave Background

This image shows an embroidery design based on the cosmic microwave background, created by Jessica Campbell, who runs Astrostitches. Inside a tan wooden frame, a ccolorful oval is stitched onto a black background in shades of blue, green, yellow, and a little bit of red. Credit: Jessica Campbell/Astrostitches

This image shows an embroidery design based on the cosmic microwave background, created by Jessica Campbell, who runs Astrostitches. Inside a tan wooden frame, a colorful oval is stitched onto a black background in shades of blue, green, yellow, and a little bit of red. Credit: Jessica Campbell/ Astrostitches

Jessica Campbell obtained her PhD in astrophysics from the University of Toronto studying interstellar dust and magnetic fields in the Milky Way Galaxy. Jessica promptly taught herself how to cross-stitch in March 2020 and has since enjoyed turning astronomical observations into realistic cross-stitches. Her piece was inspired by the cosmic microwave background, which displays the oldest light in the universe.

This image shows the oldest light in the universe, the cosmic microwave background, captured by the Wilkinson Microwave Anisotropy Probe, also known as WMAP. At the center of the image is a colorful oval that is speckled with the seeds of galaxies, which appear as blobs of dark blue, light blue, green, yellow, and a little bit of red.

The full-sky image of the temperature fluctuations (shown as color differences) in the cosmic microwave background, made from nine years of WMAP observations. These are the seeds of galaxies, from a time when the universe was under 400,000 years old. Credit: NASA/WMAP Science Team

GISSTEMP: NASA’s Yearly Temperature Release

This image shows an embroidered art piece based on NASA’s yearly temperature release. To the bottom left, two fingers hold up the circular piece. A round wooden frame holds it in place. In the center, a map appears of the different content. It’s outlined in black. Most of the map is covered in yellow stitching to show a warming pattern. To the left and right, the stitches change to an orange color and are scattered on the map. In the top left- and right-hand corners, the color changes to a dark red to signify another temperature change.

Katy Mersmann, a NASA social media specialist, created this embroidered piece based on NASA’s Goddard Institute for Space Studies (GISS) global annual temperature record. Earth’s average surface temperature in 2020 tied with 2016 as the warmest year on record. Credit: Katy Mersmann, NASA

Katy Mersmann is a social media specialist at NASA’s Goddard Space Flight Center in Greenbelt, Md. She started embroidering when she was in graduate school. Many of her pieces are inspired by her work as a communicator. With climate data in particular, she was inspired by the researchers who are doing the work to understand how the planet is changing. The GISTEMP piece above is based on a data visualization of 2020 global temperature anomalies, still currently tied for the warmest year on record.

In addition to embroidery, NASA continues to inspire art in all forms. Check out other creative takes with Landsat Crafts and the James Webb Space telescope public art gallery.

Make sure to follow us on Tumblr for your regular dose of space!

More Posts from Nasa and Others

6 years ago

10 Steps to Confirm a Planet Around Another Star

So you think you found an exoplanet -- a planet around another star? It’s not as simple as pointing a telescope to the sky and looking for a planet that waves back. Scientists gather many observations and carefully analyze their data before they can be even somewhat sure that they’ve discovered new worlds.

Here are 10 things to know about finding and confirming exoplanets.

image

This is an illustration of the different elements in our exoplanet program, including ground-based observatories, like the W. M. Keck Observatory, and space-based observatories like Hubble, Spitzer, Kepler, TESS, James Webb Space Telescope, WFIRST and future missions.

1. Pick your tool to take a look.

The vast majority of planets around other stars have been found through the transit method so far. This technique involves monitoring the amount of light that a star gives off over time, and looking for dips in brightness that may indicate an orbiting planet passing in front of the star.

We have two specialized exoplanet-hunting telescopes scanning the sky for new planets right now -- Kepler and the Transiting Exoplanet Survey Satellite (TESS) -- and they both work this way. Other methods of finding exoplanets include radial velocity (looking for a “wobble” in a star's position caused by a planet’s gravity), direct imaging (blocking the light of the star to see the planet) and microlensing (watching for events where a star passes in front of another star, and the gravity of the first star acts as a lens).

Here’s more about finding exoplanets.

image

2. Get the data.

To find a planet, scientists need to get data from telescopes, whether those telescopes are in space or on the ground. But telescopes don’t capture photos of planets with nametags. Instead, telescopes designed for the transit method show us how brightly thousands of stars are shining over time. TESS, which launched in April and just began collecting science data, beams its stellar observations back to Earth through our Deep Space Network, and then scientists get to work.

image

3. Scan the data for planets.

Researchers combing through TESS data are looking for those transit events that could indicate planets around other stars. If the star’s light lessens by the same amount on a regular basis -- for example, every 10 days -- this may indicate a planet with an orbital period (or “year”) of 10 days. The standard requirement for planet candidates from TESS is at least two transits -- that is, two equal dips in brightness from the same star.

image

4. Make sure the planet signature couldn’t be something else.

Not all dips in a star's brightness are caused by transiting planets. There may be another object -- such as a companion star, a group of asteroids, a cloud of dust or a failed star called a brown dwarf, that makes a regular trip around the target star. There could also be something funky going on with the telescope’s behavior, how it delivered the data, or other “artifacts” in data that just aren’t planets. Scientists must rule out all non-planet options to the best of their ability before moving forward.

image

5. Follow up with a second detection method.

Finding the same planet candidate using two different techniques is a strong sign that the planet exists, and is the standard for “confirming” a planet. That’s why a vast network of ground-based telescopes will be looking for the same planet candidates that TESS discovers. It is also possible that TESS will spot a planet candidate already detected by another telescope in the past. With these combined observations, the planet could then be confirmed. The first planet TESS discovered, Pi Mensae c, orbits a star previously observed with the radial-velocity method on the ground. Scientists compared the TESS data and the radial-velocity data from that star to confirm the presence of planet “c.”

Scientists using the radial-velocity detection method see a star’s wobble caused by a planet’s gravity, and can rule out other kinds of objects such as companion stars. Radial-velocity detection also allows scientists to calculate the mass of the planet.

image

6. …or at least another telescope.

Other space telescopes may also be used to help confirm exoplanets, characterize them and even discover additional planets around the same stars. If the planet is detected by the same method, but by two different telescopes, and has received enough scrutiny that the scientists are more than 99 percent sure it’s a planet, it is said to be “validated” instead of “confirmed.”

image

7. Write a paper.

After thoroughly analyzing the data, and running tests to make sure that their result still looks like the signature of a planet, scientists write a formal paper describing their findings. Using the transit method, they can also report the size of the planet. The planet’s radius is related to how much light it blocks from the star, as well as the size of the star itself. The scientists then submit the study to a journal.

image

8. Wait for peer review.

Scientific journals have a rigorous peer review process. This means scientific experts not involved in the study review it and make sure the findings look sound. The peer-reviewers may have questions or suggestions for the scientists. When everyone agrees on a version of the study, it gets published.

9. Publish the study.

When the study is published, scientists can officially say they have found a new planet. This may still not be the end of the story, however. For example, the TRAPPIST telescope in Chile first thought they had discovered three Earth-size planets in the TRAPPIST-1 system. When our Spitzer Space Telescope and other ground-based telescopes followed up, they found that one of the original reported planets (the original TRAPPIST-1d) did not exist, but they discovered five others --bringing the total up to seven wondrous rocky worlds.

image

10. Catalog and celebrate -- and look closer if you can!

Confirmed planets get added to our official catalog. So far, Kepler has sent back the biggest bounty of confirmed exoplanets of any telescope -- more than 2,600 to date. TESS, which just began its planet search, is expected to discover many thousands more. Ground-based follow-up will help determine if these planets are gaseous or rocky, and possibly more about their atmospheres. The forthcoming James Webb Space Telescope will be able to take a deeper look at the atmospheres of the most interesting TESS discoveries.

Scientists sometimes even uncover planets with the help of people like you: exoplanet K2-138 was discovered through citizen scientists in Kepler’s K2 mission data. Based on surveys so far, scientists calculate that almost every star in the Milky Way should have at least one planet. That makes billions more, waiting to be found! Stay up to date with our latest discoveries using this exoplanet counter.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

10 Ways the 2010s Pushed Communication and Navigation into the Future!

We transmit vast amounts of data from space, letting all of our satellites “phone home.” Imagery from far off regions of our solar system, beautiful visions of other galaxies and insights into planet Earth flow through our communications networks. 

Our Space Communications and Navigation (SCaN) program is dedicated to making sure we precisely track, command and control our spacecraft. All the while, they develop bold new technologies and capabilities for Artemis – our sustainable lunar exploration program that will place the first woman and the next man on the Moon in 2024. 

As we prepare to say goodbye to the 2010s, let’s take a look at 10 of the biggest milestones in space communications and navigation of the past decade. 

1. Continuous global communications? TDRS has you covered.

image

From 2013 to 2017, we launched three Tracking and Data Relay Satellites, or TDRS for short. These new satellites replenished a fleet that has been around since the early 1980s, allowing us to provide continuous global communications coverage into the next decade. Missions like the International Space Station depend on TDRS for 24/7 coverage, allowing our astronauts to call home day or night.

2. Binge watching on the Moon? Laser communications will make it possible.

image

Imagine living at the Moon. With the Artemis program, we’re making it happen! However, we can’t live there without decent internet, right? In 2013, we conducted the Lunar Laser Communication Demonstration (LLCD). This was the first high-speed laser communications demonstration from the Moon, transmitting data at a whopping 622 megabits per second, which is comparable to many high-speed fiber-optic connections enjoyed at home on Earth! Our LLCD sent back high-definition video with no buffering. 

3. Record Breaking GPS navigation, at your service.

Space communications is just one piece of the SCaN puzzle. We do navigation too! We even break records for it. In 2016, our Magnetospheric Multiscale (MMS) mission broke the world record for highest altitude GPS fix at 43,500 miles above Earth. In 2017, they broke it again at 93,200 miles. Earlier this year, they broke it a third time at 116,200 miles from Earth — about halfway to the Moon!

Thanks to MMS, our navigation engineers believe that GPS and similar navigation constellations could play a significant role in the navigation architecture of our planned Gateway spaceship in lunar orbit!

4. Crashing planes as part of the game – of research!  

image

Then there was that one summer we crashed three planes in the name of research! In 2015, our Search and Rescue office tested crash scenarios at Langley Research Center’s Landing and Impact Research Facility to improve the reliability of emergency beacons installed in planes. After the study, we made recommendations on how pilots should install these life-saving beacons, increasing their chances of survival in the event of a crash. The Federal Aviation Administration adopted these recommendations this year!

5. The Deep Space Atomic Clock takes flight. 

image

Missions venturing into deep space want the autonomy to make decisions without waiting for a commands from Earth. That’s why we launched the Deep Space Atomic Clock this past year. This itty-bitty technology demonstration is a small, ultra-stable timekeeping device that could enable autonomous navigation!

6. 50 never looked so good – for our Deep Space Network. 

image

In 2013, our Deep Space Network celebrated its 50th birthday! This is the network that transmitted Neil Armstrong’s famous words, "That's one small step for (a) man, one giant leap for mankind." Some of its more recent accomplishments? Gathering the last bits of data before Cassini dove into Saturn’s upper atmosphere, pulling down the “heart” of Pluto and talking to the Voyager probes as they journeyed into interstellar space!

7. SCaN Testbed becomes an official Hall of Famer. 

image

In 2012, we installed the SCaN Testbed, which looks like a blue box in the above picture, on the space station! We built the testbed out of Software Defined Radios, which can change their functionality and employ artificial intelligence. These radios will help us adapt to the increasingly crowded communications landscape and improve the efficiency of radio technology. The Testbed was so ground-breaking that it was inducted into the Space Technology Hall of Fame in 2019.

8. Moon mission communications system, secured! 

image

Just a few weeks ago, we held a ribbon-cutting for the Near Earth Network’s Launch Communications Segment, which will support Artemis missions as they rocket toward the Moon! During initial, dynamic phases of launch, the segment’s three stations will provide communications between astronauts and mission controllers, giving them the data necessary to ensure crew safety. 

9. Deep Space Station antenna introduces “beam waveguide” technology. 

image

On October 1, 2014, in Canberra, Australia, the Deep Space Network’s Deep Space Station 35 (DSS-35) antenna went operational. It was the first of a number of new antennas built to support the growing number of deep space missions! The antenna is different from other antennas that were built before it. Older antennas had a lot of their equipment stored high up on the antenna above the dish. DSS-35 uses “beam waveguide” technology that stores that equipment underground. This makes the weight sitting on the dish much lighter, cuts down on interference and makes the antenna much easier to operate and maintain.

10. Hello, Alaska! 

image

Last — but certainly not least — we expanded our presence in the 49th state, Alaska! While this picture might look like antennas rising from the forests of  Endor, the one in the foreground is actually an antenna we installed in 2014 in partnership with the University of Alaska Fairbanks. Because of its proximity to the polar north, this 11-meter beauty is uniquely situated to pull down valuable Earth science data from our polar-orbiting spacecraft, contributing to scientists’ understanding of our changing planet!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

Finalists for a Future Mission to Explore the Solar System

We’ve selected two finalists for a robotic mission that is planned to launch in the mid-2020s! Following a competitive peer review process, these two concepts were chosen from 12 proposals that were submitted in April under a New Frontiers program announcement opportunity.

What are they?

In no particular order…

CAESAR

image

CAESAR, or the Comet Astrobiology Exploration Sample Return mission seeks to return a sample from 67P/Churyumov-Gerasimenko – the comet that was successfully explored by the European Space Agency’s Rosetta spacecraft – to determine its origin and history.

image

This mission would acquire a sample from the nucleus of comet Churyumov-Gerasimenko and return it safely to Earth. 

image

Comets are made up of materials from ancient stars, interstellar clouds and the birth of our solar system, so the CAESAR sample could reveal how these materials contributed to the early Earth, including the origins of the Earth's oceans, and of life.

Dragonfly

A drone-like rotorcraft would be sent to explore the prebiotic chemistry and habitability of dozens of sites on Saturn’s moon Titan – one of the so-called ocean worlds in our solar system.

image

Unique among these Ocean Worlds, Titan has a surface rich in organic compounds and diverse environments, including those where carbon and nitrogen have interacted with water and energy.

image

Dragonfly would be a dual-quadcopter lander that would take advantage of the environment on Titan to fly to multiple locations, some hundreds of miles apart, to sample materials and determine surface composition to investigate Titan's organic chemistry and habitability, monitor atmospheric and surface conditions, image landforms to investigate geological processes, and perform seismic studies.

What’s Next?

The CAESAR and Dragonfly missions will receive funding through the end of 2018 to further develop and mature the concepts. It is planned that from these, one investigation will be chosen in the spring of 2019 to continue into subsequent mission phases.

image

That mission would be the fourth mission in the New Frontiers portfolio, which conducts principal investigator (PI)-led planetary science missions under a development cost cap of approximately $850 million. Its predecessors are the New Horizons mission to Pluto and a Kuiper Belt object, the Juno mission to Jupiter and OSIRIS-REx, which will rendezvous with and return a sample of the asteroid Bennu. 

Key Technologies

We also announced that two mission concepts were chosen to receive technology development funds to prepare them for future mission opportunities.

image

The Enceladus Life Signatures and Habitability (ELSAH) mission concept will receive funds to enable life detection measurements by developing cost-effective techniques to limit spacecraft contamination on cost-capped missions.

image

The Venus In situ Composition Investigations (VICI) mission concept will further develop the VEMCam instrument to operate under harsh conditions on Venus. The instrument uses lasers on a lander to measure the mineralogy and elemental composition of rocks on the surface of Venus.

The call for these mission concepts occurred in April and was limited to six mission themes: comet surface sample return, lunar south pole-Aitken Basin sample return, ocean worlds, Saturn probe, Trojan asteroid tour and rendezvous and Venus insitu explorer.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
7 years ago

Meet More Humans Behind the Robots

There are many paths to a career at NASA. Here are 10 amazing people on the frontlines of deep space exploration.

1—The Pub Master

image

“I was running a pub in the North of England after dropping out of college, and as fate would have it, I met a lovely American physics lecturer Dr. Jim Gotaas,” said Abi Rymer (shown above in the bottom right of the group photo). Abi works on the Europa Clipper mission.

“I was sold on a course he ran on Observational Astronomy and Instrumentation at the University of Central Lancashire in Preston, Lancashire and I went from there to join the second year of the Physics and Astronomy at Royal Holloway, part of London University. I loved theoretical physics but never imagined I was talented enough to do a PhD. When I graduated, I was shocked to be top of the year.”

2—The Orbit Artist

image

“Within seven months of being at NASA’s Jet Propulsion Laboratory,” says Brent Buffington, a mission design manager, “I figured out we could modify the Cassini Prime Mission trajectory to fly very close to the moon Tethys—a moon that didn’t have any close flybys in the original Prime Mission—and simultaneously lower a planned 621-mile (1,000-kilometer) targeted flyby of Hyperion down to 311 miles (500 kilometers). To be this young buck fresh out of grad school standing in front of a room full of seasoned engineers and scientists, trying to convince them that this was the right thing to do with a multi-billion dollar asset, and ultimately getting the trajectory modification approved was extremely rewarding.”

3—The Searcher

image

“Geochemical evidence suggests that between 4 and 2.5 billion years ago, there may have been an intermittent haze in the atmosphere of Earth similar to the haze in the atmosphere of Saturn’s moon Titan,” says astrobiologist Giada Arney. “It's a really alien phase of Earth's history —our planet wouldn't have been a pale blue dot, it would have been a pale orange dot. We thought about questions like: What would our planet look like if you were looking at it as an exoplanet? How you might infer biosignatures—the signs of life—from looking at such an alien planet?”

4—The Volcanologist

image

“I spent the summer after graduating from studying Mars' remnant magnetic field in the Planetary Magnetospheres Lab at NASA Goddard Space Flight Center,” says planetary geophysicist Lynnae Quick. “My advisor, Mario Acuña, showed me how to bring up Mars Global Surveyor (MGS) images of the Martian surface on my computer. This was the first time I'd ever laid eyes, firsthand, on images of another planet's surface returned from a spacecraft. I remember just being in awe.

“My second favorite moment has to be pouring over mosaics of Europa and learning to identify and map chaos regions, impact craters and other surface units during my first summer at APL. Once again, I felt that there was a whole other alien world at my fingertips.”

5—The Pioneer

image

“A few months after NASA was formed I was asked if I knew anyone who would like to set up a program in space astronomy,” says Nancy Roman, a retired NASA astronomer. “I knew that taking on this responsibility would mean that I could no longer do research, but the challenge of formulating a program from scratch that I believed would influence astronomy for decades to come was too great to resist.”

6—The Modeler

image

“I took Planetary Surfaces with Bruce Murray (whom I later found out had been JPL’s fifth director) and did a presentation on Europa's chaos terrains,” say Serina Diniega, an investigation scientist on the Europa Clipper mission. “I was fascinated to learn about the different models proposed for the formation of these enigmatic features and the way in which scientists tried to discriminate between the models while having very limited observational data. In this, I realized I’d found my application: modeling the evolution of planetary landforms."

7—The Bassist

image

“I admire people who dedicate themselves 110 percent to what they do,” says Warren Kaye, a software engineer. “People like the recently deceased Stephen Hawking, who rose above his own physical limitations to develop new scientific theories, or Frank Zappa, who was able to produce something like 50 albums worth of music over a 20-year span.”

8—The (Space) Photographer

image

“I got to pick what the camera took pictures of in a given week, and then analyze those pictures from the standpoint of a geologist,” says Tanya Harrison, a planetary scientist. “There aren't many people in the world who get paid to take pictures of Mars every day! Seeing the first images...It was almost surreal -- not only are you picking what to take pictures of on Mars, you're also typically the first person on Earth to see those pictures when they come back from Mars.”

9—The Scientist

image

As a child, what did you want to be when you grew up?

“A scientist,” says Casey Lisse, a scientist on our New Horizons mission to Pluto and the Kuiper Belt.

At what point did you determine that you would become a scientist?

“Age 5.”

10 —The Extrovert

image

“Throughout my life, I’ve gone from being an extremely shy introvert to more of an outgoing extrovert,” says science writer Elizabeth Landau. “It’s been a gradual uphill climb. I used to be super shy. When I was really young, I felt like I didn't know how to talk to other kids. I was amazed by how people fluidly spoke to each other without thinking too hard about it, without appearing to have any kind of embarrassment or reservation about what they were saying. I've definitely developed confidence over time—now I can very quickly and comfortably switch from talking about something like physics to personal matters, and be totally open to listening to others as well.”

Check out the full version of “Solar System: 10 Things to Know This Week” HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
6 years ago

How Airglow Can Help Us Understand the Sun’s Influence on Earth

You may have seen the famous blue marble or pale blue dot images showing Earth from 18,000 and 3.7 billion miles away, respectively. But closer to home — some 300 miles above Earth's surface — you might encounter an unfamiliar sight: vibrant swaths of red and green or purple and yellow light emanating from the upper atmosphere.

This light is airglow.

image

Airglow is created when atoms and molecules in the upper atmosphere, excited by sunlight, emit light to shed excess energy. Or, it can happen when atoms and molecules that have been ionized by sunlight collide with and capture a free electron. In both cases, these atmospheric particles emit light in order to relax again. The process is similar to how auroras are created, but while auroras are driven by high-energy solar wind, airglow is energized by day-to-day solar radiation.

image

Since sunlight is constant, airglow constantly shines throughout Earth’s atmosphere, and the result is a tenuous bubble of light that closely encases our planet. Its light is too dim to see easily except in orbit or on the ground with clear, dark skies and a sensitive camera — it’s one-tenth as bright as the light given off by all the stars in the night sky.  

image

Airglow highlights a key part of our atmosphere: the ionosphere. Stretching from roughly 50 to 400 miles above Earth’s surface, the ionosphere is an electrified layer of the upper atmosphere generated by extreme ultraviolet radiation from the Sun. It reacts to both terrestrial weather below and solar energy streaming in from above, forming a complex space weather system. Turbulence in this ever-changing sea of charged particles can manifest as disruptions that interfere with Earth-orbiting satellites or communication and navigation signals.

image

Understanding the ionosphere’s extreme variability is tricky because it requires untangling interactions between the different factors at play — interactions of which we don’t have a clear picture. That’s where airglow comes in. Each atmospheric gas has its own favored airglow color, hangs out at a different height and creates airglow by a different process, so we can use airglow to study different layers of the atmosphere.

image

Airglow carries information on the upper atmosphere’s temperature, density, and composition, but it also helps us trace how particles move through the region itself. Vast, high-altitude winds sweep through the ionosphere, pushing its contents around the globe — and airglow’s subtle dance follows their lead, highlighting global patterns.

image

Two NASA missions take advantage of precisely this effect to study the upper atmosphere: ICON — short for Ionospheric Connection Explorer — and GOLD — Global-scale Observations of the Limb and Disk.

ICON focuses on how charged and neutral gases in the upper atmosphere behave and interact, while GOLD observes what drives change — the Sun, Earth’s magnetic field or the lower atmosphere — in the region.

image

By imaging airglow, the two missions will enable scientists to tease out how space and Earth’s weather intersect, dictating the region’s complex behavior.

Keep up with the latest in NASA's airglow and upper atmosphere research on Twitter and Facebook or at nasa.gov/sunearth.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago
It's A Long Ways Down. This Is A View From The Vantage Point Of Astronaut Shane Kimbrough During His

It's a long ways down. This is a view from the vantage point of astronaut Shane Kimbrough during his spacewalk last Friday outside the International Space Station. Shane posted this photo and wrote, " View of our spectacular planet (and my boots) during the #spacewalk yesterday with @Thom_astro." During the spacewalk with Kimbrough and Thomas Pesquet of ESA, which lasted just over six-and-a-half hours, the two astronauts successfully disconnected cables and electrical connections to prepare for its robotic move Sunday, March 26.

Two astronauts will venture outside the space station again this Thursday, March 30 for the second of three spacewalks. Kimbrough and Flight Engineer Peggy Whitson will begin spacewalk preparation live on NASA Television starting at 6:30 a.m. EST, with activities beginning around 8 a.m. Watch live online here.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

How did you deal with the disappointment of being medically disqualified for astronaut candidacy?


Tags
5 years ago
Say Hello To The Butterfly Nebula 👋

Say hello to the Butterfly Nebula 👋

It looks like our Hubble Space Telescope captured an image of a peaceful, cosmic butterfly unfurling its celestial wings, but the truth is vastly more violent. In the Butterfly Nebula, layers of gas are being ejected from a dying star. Medium-mass stars grow unstable as they run out of fuel, which leads them to blast tons of material out into space at speeds of over a million miles per hour!

Streams of intense ultraviolet radiation cause the cast-off material to glow, but eventually the nebula will fade and leave behind only a small stellar corpse called a white dwarf. Our middle-aged Sun can expect a similar fate once it runs out of fuel in about six billion years.

Planetary nebulas like this one aren’t actually related to planets; the term was coined by astronomer William Herschel, who actually discovered the Butterfly Nebula in 1826. Through his small telescope, planetary nebulas looked like glowing, planet-like orbs. While stars that generate planetary nebulas may have once had planets orbiting them, scientists expect that the fiery death throes these stars undergo will ultimately leave any planets in their vicinity completely uninhabitable.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

That’s a wrap folks! Gucci is signing off. Thank you for all the amazing questions. Didn’t get your question answered? No worries! We’re coming to you live next week in our second Answer Time of 2020, featuring NASA Astronaut Nick Hague. Submit your questions now here: https://nasa.tumblr.com/ask

Ask NASA astronaut Nick Hague a question!
Tumblr
Ask NASA astronaut Nick Hague a question!

Tags
8 years ago

Solar System: Things to Know This Week

Learn more about the speed and final mission for Cassini, citizen science on Jupiter and more!

1. Cassini's Two Speeds

image

Our Cassini spacecraft is blazingly fast. How fast? Well, that's all relative. Learn about the need for speed in space navigation.

2. Daphnis, the Wavemaker

image

The wavemaker moon, Daphnis, is featured in this view, taken as our Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on earlier this month. This is the closest view of the small moon obtained to date.

3. Cassini's Grand Finale

image

The European Space Agency’s tracking antennas at New Norcia, Western Australia, and Malargüe, Argentina, are helping with crucial observations during Cassini's last months in orbit, dubbed the 'Grand Finale.'

4. Citizen Science—in Space

image

This image of a crescent Jupiter and the iconic Great Red Spot was created by a citizen scientist Roman Tkachenko using data from Juno spacecraft's onboard camera. The images also bear witness a series of storms shaped like white ovals, known informally as the "string of pearls." 

5. 360 video: Rover Ride-Along in the Mars Yard

image

Get a robot's-eye-view of the "Mars Yard," a terrain simulation area at the Jet Propulsion Laboratory where rover hardware and software are tested before being sent to the Red Planet. Ride alongside, atop and below the Scarecrow test mobility double for the Curiosity and Mars 2020 rovers.

Watch the video: www.youtube.com/watch Learn more about Scarecrow: http://mars.jpl.nasa.gov/news/2014/scarecrow-rover-goes-off-roading-in-dumont-dunes

Discover the full list of 10 things to know about our solar system this week HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • pictures-and-things-321
    pictures-and-things-321 liked this · 3 weeks ago
  • goo-p
    goo-p liked this · 4 weeks ago
  • fandomficmain
    fandomficmain liked this · 1 month ago
  • matriarchy-au
    matriarchy-au reblogged this · 1 month ago
  • immafuckingfool
    immafuckingfool liked this · 1 month ago
  • digital0ak
    digital0ak liked this · 1 month ago
  • the-magnalotl
    the-magnalotl liked this · 2 months ago
  • yeoldecryptid
    yeoldecryptid reblogged this · 2 months ago
  • tinkywinky-thefairandgood
    tinkywinky-thefairandgood reblogged this · 2 months ago
  • khoshekhs-redemption
    khoshekhs-redemption reblogged this · 2 months ago
  • khoshekhs-redemption
    khoshekhs-redemption liked this · 2 months ago
  • whyhellotheregandalf
    whyhellotheregandalf liked this · 2 months ago
  • neady-night
    neady-night reblogged this · 3 months ago
  • neady-night
    neady-night liked this · 3 months ago
  • sittingonadockeatingstrawberries
    sittingonadockeatingstrawberries reblogged this · 3 months ago
  • bluebellvanishingluminousrabbit
    bluebellvanishingluminousrabbit liked this · 3 months ago
  • mjks-cheesecake
    mjks-cheesecake reblogged this · 3 months ago
  • chaoticconnoisseurgiver
    chaoticconnoisseurgiver reblogged this · 3 months ago
  • eating-these-flowers
    eating-these-flowers reblogged this · 3 months ago
  • horrorscentral
    horrorscentral liked this · 3 months ago
  • vaclav8vaculik
    vaclav8vaculik liked this · 3 months ago
  • jorvigan-fairy
    jorvigan-fairy liked this · 3 months ago
  • redstyxsora
    redstyxsora liked this · 3 months ago
  • queerlypeaceful
    queerlypeaceful reblogged this · 3 months ago
  • thevoidbean
    thevoidbean liked this · 3 months ago
  • iamthewanheda
    iamthewanheda reblogged this · 3 months ago
  • odd3nough
    odd3nough liked this · 3 months ago
  • anautisticraccoon
    anautisticraccoon liked this · 3 months ago
  • krayters
    krayters liked this · 4 months ago
  • swords-and-storms
    swords-and-storms liked this · 4 months ago
  • thatqueerfandomnerd
    thatqueerfandomnerd reblogged this · 4 months ago
  • kabbagekream
    kabbagekream liked this · 4 months ago
  • dontmindme593
    dontmindme593 liked this · 4 months ago
  • joestrummen
    joestrummen liked this · 5 months ago
  • zcrachn
    zcrachn liked this · 5 months ago
  • hatchiio
    hatchiio liked this · 5 months ago
  • jsisnsxgzn
    jsisnsxgzn liked this · 5 months ago
  • pinkpeachesandcream
    pinkpeachesandcream liked this · 5 months ago
  • pseuglam
    pseuglam reblogged this · 5 months ago
  • chromaticether
    chromaticether liked this · 5 months ago
  • sodagiraffe
    sodagiraffe liked this · 5 months ago
  • mangachick14
    mangachick14 liked this · 5 months ago
  • demboysintheyard
    demboysintheyard reblogged this · 5 months ago
  • demboysintheyard
    demboysintheyard liked this · 5 months ago
  • not12001ants
    not12001ants liked this · 5 months ago
  • austinkimuhu
    austinkimuhu liked this · 5 months ago
  • eating-these-flowers
    eating-these-flowers reblogged this · 5 months ago
  • la-locuraaaa
    la-locuraaaa liked this · 5 months ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags