TRAILER: “FANTASTIC PLANET” (1973)

TRAILER: “FANTASTIC PLANET” (1973)

Also known as “la Planète sauvage”, this film is an animated story that follows the relationship between the small human-like Oms and their blue-skinned oppressors, the Draags, who rule the planet of Ygam. While the Draags have long kept Oms as illiterate pets, this hierarchy shifts after an Om boy becomes educated, thanks to a young female Draag. This leads to an Om rebellion, which weakens the Draag control over their race. Will the Oms and the Draags find a way to coexist? Or will they destroy each other?

Tags

More Posts from Primordialbitch and Others

5 years ago
A Russian Zoo Is Home To A Unique Animal - The Liger. It Is Half-lioness, Half-tiger. Mother Zita Is
A Russian Zoo Is Home To A Unique Animal - The Liger. It Is Half-lioness, Half-tiger. Mother Zita Is
A Russian Zoo Is Home To A Unique Animal - The Liger. It Is Half-lioness, Half-tiger. Mother Zita Is

A Russian zoo is home to a unique animal - the liger. It is half-lioness, half-tiger. Mother Zita is pictured licking her one month old liliger cub 

5 years ago

What's a neutron star? I read about them in Bill Bryson's book, but I couldn't figure out why a neutron start would happen in the first place?

When massive stars collapse, the core of the star gets compressed extremely tightly by the force of its own gravity. As the core collapses, the electrons and protons in the core get closer and closer together. Eventually, the core gets so dense that the electrons and protons are forced together, combining into neutrons. The entire core becomes essentially a solid ball of neutrons, as dense as an atomic nuclei. The outer layers of the star, which are also rushing in towards the core, bounce off of this rock-hard layer of neutrons and whiz off into space, creating a supernova and leaving behind a neutron star at the center. And all of this happens in less than a second. Pretty wild. To summarize: neutron stars are giant balls of neutrons that resulted when a stellar core collapsed and became so dense the protons and electrons combined into neutrons. 

Side note: Robert L. Forward wrote a really interesting novel called Dragon’s Egg, which was about intelligent life on a neutron star! It’s quite an interesting read, and you learn a whole lot about neutron stars since the author has a Ph.D in physics. If you want a copy, you can find it here; you won’t find it at a bookstore because it’s out of print, but you can find a used copy online (I linked to one). Let me know if you have any other questions, I’m happy to answer them!


Tags
3 years ago

Red paint on 1,000-year-old gold mask from Peru contains human blood proteins

Red Paint On 1,000-year-old Gold Mask From Peru Contains Human Blood Proteins

Thirty years ago, archeologists excavated the tomb of an elite 40-50-year-old man from the Sicán culture of Peru, a society that predated the Incas. The man’s seated, upside-down skeleton was painted bright red, as was the gold mask covering his detached skull. Now, researchers reporting in ACS’ Journal of Proteome Research have analyzed the paint, finding that, in addition to a red pigment, it contains human blood and bird egg proteins.

The Sicán was a prominent culture that existed from the ninth to 14th centuries along the northern coast of modern Peru. During the Middle Sicán Period (about 900–1,100 A.D.), metallurgists produced a dazzling array of gold objects, many of which were buried in tombs of the elite class. In the early 1990s, a team of archaeologists and conservators led by Izumi Shimada excavated a tomb where an elite man’s seated skeleton was painted red and placed upside down at the center of the chamber. Read more.

5 years ago

Pick Your Favorite Findings From Fermi’s First Decade

The Fermi Gamma-ray Space Telescope has been observing some of the most extreme objects and events in the universe — from supermassive black holes to merging neutron stars and thunderstorms — for 10 years. Fermi studies the cosmos using gamma rays, the highest-energy form of light, and has discovered thousands of new phenomena for scientists.

Here are a few of our favorite Fermi discoveries, pick your favorite in the first round of our “Fermi Science Playoff.” 

Colliding Neutron Stars

image

In 2017, Fermi detected a gamma ray burst at nearly the same moment ground observatories detected gravitational waves from two merging neutron stars. This was the first time light and ripples in space-time were detected from the same source.

The Sun and Moon in Gamma Rays

image

In 2016, Fermi showed the Moon is brighter in gamma rays than the Sun. Because the Moon doesn’t have a magnetic field, the surface is constantly pelted from all directions by cosmic rays. These produce gamma rays when they run into other particles, causing a full-Moon gamma-ray glow.

Record Rare from a Blazar

image

The supermassive black hole at the center of the galaxy 3C 279 weighs a billion times the mass of our Sun. In June 2015, this blazar became the brightest gamma-ray source in the sky due to a record-setting flare.

The First Gamma-Ray Pulsar in Another Galaxy

image

In 2015, for the first time, Fermi discovered a gamma-ray pulsar, a kind of rapidly spinning superdense star, in a galaxy outside our own. The object, located on the outskirts of the Tarantula Nebula, also set the record for the most luminous gamma-ray pulsar we’ve seen so far.

A Gamma-Ray Cycle in Another Galaxy

image

Many galaxies, including our own, have black holes at their centers. In active galaxies, dust and gas fall into and “feed” the black hole, releasing light and heat. In 2015 for the first time, scientists using Fermi data found hints that a galaxy called PG 1553+113 has a years-long gamma-ray emission cycle. They’re not sure what causes this cycle, but one exciting possibility is that the galaxy has a second supermassive black hole that causes periodic changes in what the first is eating.

Gamma Rays from Novae

image

A nova is a fairly common, short-lived kind of explosion on the surface of a white dwarf, a type of compact star not much larger than Earth. In 2014, Fermi observed several novae and found that they almost always produce gamma-rays, giving scientists a new type of source to explore further with the telescope.

A Record-Setting Cosmic Blast

image

Gamma-ray bursts are the most luminous explosions in the universe. In 2013, Fermi spotted the brightest burst it’s seen so far in the constellation Leo. In the first three seconds alone, the burst, called GRB 130427A, was brighter than any other burst seen before it. This record has yet to be shattered.

Cosmic Rays from Supernova Leftovers

image

Cosmic rays are particles that travel across the cosmos at nearly the speed of light. They are hard to track back to their source because they veer off course every time they encounter a magnetic field. In 2013, Fermi showed that these particles reach their incredible speed in the shockwaves of supernova remains — a theory proposed in 1949 by the satellite’s namesake, the Italian-American physicist Enrico Fermi.

Discovery of a Transformer Pulsar

image

In 2013, the pulsar in a binary star system called AY Sextanis switched from radio emissions to high-energy gamma rays. Scientists think the change reflects erratic interaction between the two stars in the binary.

Gamma-Ray Measurement of a Gravitational Lens

image

A gravitational lens is a kind of natural cosmic telescope that occurs when a massive object in space bends and amplifies light from another, more distant object. In 2012, Fermi used gamma rays to observe a spiral galaxy 4.03 billion light-years away bending light coming from a source 4.35 billion light-years away.

New Limits on Dark Matter

image

We can directly observe only 20 percent of the matter in the universe. The rest is invisible to telescopes and is called dark matter — and we’re not quite sure what it is. In 2012, Fermi helped place new limits on the properties of dark matter, essentially narrowing the field of possible particles that can describe what dark matter is.

‘Superflares’ in the Crab Nebula

image

The Crab Nebula supernova remnant is one of the most-studied targets in the sky — we’ve been looking at it for almost a thousand years! In 2011, Fermi saw it erupt in a flare five times more powerful than any previously seen from the object. Scientists calculate the electrons in this eruption are 100 times more energetic than what we can achieve with particle accelerators on Earth.

Thunderstorms Hurling Antimatter into Space

image

Terrestrial gamma-ray flashes are created by thunderstorms. In 2011, Fermi scientists announced the satellite had detected beams of antimatter above thunderstorms, which they think are a byproduct of gamma-ray flashes.

Giant Gamma-Ray Bubbles in the Milky Way

image

Using data from Fermi in 2010, scientists discovered a pair of “bubbles” emerging from above and below the Milky Way. These enormous bubbles are half the length of the Milky Way and were probably created by our galaxy’s supermassive black hole only a few million years ago.

Hint of Starquakes in a Magnetar

image

Neutron stars have magnetic fields trillions of times stronger than Earth’s. Magnetars are neutron stars with magnetic fields 1,000 times stronger still. In 2009, Fermi saw a storm of gamma-ray bursts from a magnetar called SGR J1550-5418, which scientists think were related to seismic waves rippling across its surface.

A Dark Pulsar

image

We observe many pulsars using radio waves, visible light or X-rays. In 2008, Fermi found the first gamma-ray only pulsar in a supernova remnant called CTA 1. We think that the “beam” of gamma rays we see from CTA 1 is much wider than the beam of other types of light from that pulsar. Those other beams never sweep across our vision — only the gamma-rays.

image

Have a favorite Fermi discovery or want to learn more? Cast your vote in the first of four rounds of the Fermi Science Playoff to help rank Fermi’s findings. Or follow along as we celebrate the mission all year.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
5 years ago

Your fave is problematic: Neutron Stars

Neutron stars are probably one of the weirdest type of objects to exist in the universe… but first let me explain what a neutron star is

when a star with the mass of 8-20 times of the sun dies (and by dies I mean fucking explodes), the core collapses to form a neutron star

they are incredibly dense, spin rapidly and have very strong magnetic fields

sounds all fun and games, right? sounds normal? well listen up

So, we know that electrons usually refuse to be squeezed together. but in a death event of a big star, the pressure is so extreme that protons and electrons get violently SMASHED together and form neutrons. 

sounds like someone needs to take an anti-agression class if you ask me

Now, what once was a star more massive than the Sun, is condensed to a tiny ball (usually about 10-20km!) of neutrons, with all of the mass in this tiny ball. 

To visualize, imagine the mass of the Sun (300 000X the mass of the Earth), in a little 20km sphere, the size of a small city.

To visualize the density of a neutron star, think of the classic model of the atom. if an atom was a sports field 100m across, it would be mostly empty. almost all of the atom’s mass sits in the core, in this example, the core is the size of a marble.

but in a neutron star, this doesn’t apply anymore. in a neutron star, the entire stadium would be filled to the brim with neutrons. ALL. OF. IT.

a single cubic centimetre of Neutronium has the mass of 400 million tons. that’s the total mass of every single car and truck in the US.

the typical gravity of a neutron star is about 100 million times of that of the Earth. clingy as shit

so far, we have detected over 1000 of these weird fucks in our galaxy alone. yikes

some Neutron stars are vampires. They can be in a binary star system where a normal star orbits them and they feed of that material

summary: extremely weird and violent space ball of rage, tiny, filled to the top with anger, sometimes a vampire


Tags
4 years ago

10 Amazing Space Discoveries by the World’s Largest Flying Observatory

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

On the night of May 26, 2010, the Stratospheric Observatory for Infrared Astronomy, or SOFIA, the world’s largest flying observatory, first peered into the cosmos. Its mission: to study celestial objects and astronomical phenomena with infrared light. Many objects in space emit almost all their energy at infrared wavelengths. Often, they are invisible when observed in ordinary, visible light. Over the last decade, the aircraft’s 106-inch telescope has been used to study black holes, planets, galaxies, star-forming nebulas and more! The observations have led to major breakthroughs in astronomy, revolutionizing our understanding of the solar system and beyond. To celebrate its 10 years of exploration, here’s a look at the top 10 discoveries made by our telescope on a plane:

The Universe’s First Type of Molecule

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

Scientists believe that around 100,000 years after the big bang, helium and hydrogen combined to make a molecule called helium hydride. Its recent discovery confirms a key part of our basic understanding of the early universe.

A New View of the Milky Way

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

More than a pretty picture, this panorama of cosmic scale reveals details that can help explain how massive stars are born and what’s feeding our Milky Way galaxy’s supermassive black hole.

When Planets Collide

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

A double-star system that is more than 300 light-years away likely had an extreme collision between two of its rocky planets. A similar event in our own solar system may have formed our Moon.

How A Black Hole Feasts

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

Fear not, the dark, my friend. And let the feast begin! Magnetic fields in the Cygnus A galaxy are trapping material where it is close enough to be devoured by a hungry black hole.

Somewhere Like Home

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

The planetary system around Epsilon Eridani, a star located about 10 light-years away, has an architecture remarkably similar to our solar system. What’s more, its central star is a younger, fainter version of our Sun.

A Quiet Place

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

Black holes in many galaxies are actively consuming material, but our Milky Way galaxy’s central black hole is relatively quiet. Observations show magnetic fields may be directing material around, not into, the belly of the beast.

The Great Escape

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

Ever wonder how material leaves a galaxy? The wind flowing from the center of the Cigar Galaxy is so strong it’s pulling a magnetic field — and the mass of 50 to 60 million Suns — with it.

Exploding Star, New Worlds

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

What happens when a star goes boom? It turns out that supernova explosions can produce a substantial amount of material from which planets like Earth can form.

Stellar Sibling Rivalry

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

They say siblings need time and space to grow, but here’s one that really needs some room. A newborn star in the Orion Nebula is clearing a bubble of space around it, preventing any new luminous family members from forming nearby.

Clues to Life’s Building Blocks

10 Amazing Space Discoveries By The World’s Largest Flying Observatory

Radiation from stars is making organic molecules in nebula NGC 7023, also known as the Iris Nebula, larger and more complex. The growth of these molecules is one of the steps that could lead to the emergence of life under the right circumstances.

SOFIA is a modified Boeing 747SP aircraft that allows astronomers to study the solar system and beyond in ways that are not possible with ground-based telescopes. Find out more about the mission at www.nasa.gov/SOFIA.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

3 years ago

planetarium presenters trying to explain to a busload of 4th graders how incomprehensibly vast space is

5 years ago

Washington State University Physicists create 'negative mass'

Washington State University physicists have created a fluid with negative mass, which is exactly what it sounds like. Push it, and unlike every physical object in the world we know, it doesn’t accelerate in the direction it was pushed. It accelerates backwards.

image

The phenomenon is rarely created in laboratory conditions and can be used to explore some of the more challenging concepts of the cosmos, said Michael Forbes, a WSU assistant professor of physics and astronomy and an affiliate assistant professor at the University of Washington. The research appears today in the journal Physical Review Letters, where it is featured as an “Editor’s Suggestion.”

Hypothetically, matter can have negative mass in the same sense that an electric charge can be either negative or positive. People rarely think in these terms, and our everyday world sees only the positive aspects of Isaac Newton’s Second Law of Motion, in which a force is equal to the mass of an object times its acceleration, or F=ma. In other words, if you push an object, it will accelerate in the direction you’re pushing it. Mass will accelerate in the direction of the force.

Keep reading

5 years ago

Pls tell me interesting facts about stars

Interesting facts about stars:

Heavy stars blow up and make heavier elements like gold. So, every bit of gold you’ve ever seen, worn, or touched came from the dying explosion of a star. Other elements made in supernovae include anything on the periodic table heavier than iron

Heavy stars blow up when they start fusing iron. Meaning, the iron in your frying pan, car, and your blood killed a star at least 3 times the mass of the sun.

Some massive stars that die end up compressing all their mass into a star about 6 miles across, or about the size of a city. This is called a neutron star.

To put this in perspective, these stars start out 3 times as big as our sun and all of their mass is crushed into something the size of a city. The space between atoms is squished away, and the protons and electrons combine to form neutrons. 

Neutron stars are literally as dense as atomic nuclei

Most stars come in pairs

The most common stellar type is a red dwarf, which is a small, red, dim, cool star.

Honestly, that’s just the first few that come to mind, space is really crazy.


Tags
4 years ago

the fact that jupiter and saturn haven’t been physically and observably this close since 1226 is so poetic bc you’re telling me i’m going to look up at and admire the same astronomical anomaly in the sky that someone hundreds and hundreds of years ago, with less knowledge of the stars and the planets than we have now, also looked up at and admired nonetheless. the past is long gone but the awareness of being connected to someone somewhere long ago thru the night sky is overwhelming me

Loading...
End of content
No more pages to load
  • dunloth
    dunloth liked this · 5 years ago
  • primordialbitch
    primordialbitch reblogged this · 5 years ago
  • adiposeclot
    adiposeclot liked this · 5 years ago
  • martattack
    martattack reblogged this · 5 years ago
  • blinkinink
    blinkinink liked this · 5 years ago
  • urlocalwifi
    urlocalwifi liked this · 5 years ago
  • furthestfromthetruth
    furthestfromthetruth reblogged this · 5 years ago
  • sexyvanillatiger
    sexyvanillatiger liked this · 5 years ago
  • vicolizena
    vicolizena reblogged this · 5 years ago
  • vicolizena
    vicolizena liked this · 5 years ago
  • havil-otto
    havil-otto reblogged this · 5 years ago
  • havil-otto
    havil-otto liked this · 5 years ago
  • enochian-technology
    enochian-technology reblogged this · 5 years ago
  • enochian-technology
    enochian-technology liked this · 5 years ago
  • scifigeneration
    scifigeneration reblogged this · 5 years ago

i just think black holes are neat

52 posts

Explore Tumblr Blog
Search Through Tumblr Tags