Dive Deep into Creativity: Discover, Share, Inspire
Когда Цзюнь Яо устроился на новую работу, этот инженер-электрик не собирался создавать «зеленый» источник энергии. Но случай помог ему найти способ использовать полностью натуральный белок для превращения воды в электричество.
Яо работает в Массачусетском университете (UMass) в Амхерсте. Он использует нанопровода в разрабатываемой им электронике. Эти провода очень крошечные, каждый - всего в одну миллиардную метра (три миллиардных фута) в ширину. Но Яо с трудом набирал их в достаточном количестве для своих исследований.
Обескураженный, он рассказал о проблеме Дереку Ловли. Этот микробиолог также работает в UMass. Ловли рассказал Яо о бактериях, которые образуют нанонити белка. Чтобы выяснить, могут ли они заменить нанопроволоки, пара объединилась.
Бактерии Geobacter обитают в грязи. Ловли впервые обнаружил эти микробы более 30 лет назад. С тех пор эти микробы использовались для очистки разливов нефти и радиоактивных отходов.
Бактерии вырастают проволочные белковые нити по всей поверхности своих клеток. «Они выглядят как миниатюрные морские ежи», - говорит Яо. Когда микробы превращают пищу в энергию, они выделяют электроны. Эти электроны проходят через белковые нити, попадая в грязь на железе.
Для нового исследования Ловли удалил нанонити из миллиардов этих бактерий. Затем команда Яо зажала облако похожих на проволоку нитей между двумя маленькими золотыми металлическими пластинами. (Представьте, что вы берете горсть ниток и гладите их.) Золото служит электродами. Они вступают в контакт с неметаллической частью электрической цепи (эти белковые провода). Затем аспирант Сяомэн Лю приложил напряжение между двумя электродами. Яо сравнивает это с подключением их к батарее. Когда Лю сделал это, электричество - поток электронов - прошел через систему. Белковые «проволочки» теперь вели себя как металлические.
Лабораторное устройство помещает пленку из белковых нанопроволок между двумя золотыми электродами.
Счастливая случайность
Однажды Лю забыл включить напряжение. Тем не менее, он видел, что через устройство все равно проходит электричество. К его удивлению, белковые нанопровода создали электричество. После тестирования исследователи показали, что влажность воздуха - содержание воды - питала установку.
Взволнованные, исследователи решили проверить, насколько хорошо работает их новая система. Они начали с одного крошечного устройства. Его нижний электрод имел ширину всего 5 миллиметров (0,2 дюйма). Поверх него был слой нанопроволок толщиной 7 микрометров (что намного тоньше человеческого волоса). Сверху располагался квадратный электрод меньшего размера, по 1 миллиметру с каждой стороны.
Устройство вырабатывало электричество при всех протестированных уровнях влажности, но оно вырабатывало больше при высокой влажности. На максимальной мощности он выдавал устойчивые 0,5 вольт. Когда исследователи подключили пять устройств, они получили в пять раз больше энергии. Накрыв устройство, чтобы вода не попадала в нанопроволоки, отключите его выработку электроэнергии. Снятие крышки снова включило устройство. По словам Яо, хотя мощность одного устройства крошечная, группа из них может заряжать телефон или зажигать лампу.
Ключ к системе - небольшие промежутки между нанопроводами, называемые нанопорами. Они позволяют воде перемещаться между проводами. Больше воды собирается на стороне маленького электрода, где упаковка нанопроволоки контактирует с воздухом. Меньше собирается на стороне, где нанопроволоки соприкасаются с большим электродом. Эта разница, или градиент, вызывает накопление положительного заряда на одной стороне «проводов» и отрицательного заряда на другой. Яо говорит, что это немного похоже на то, как образуется молния. «Движение молекул воды создает разделение зарядов в облаке», - объясняет он. «В конце концов, он достигает порога, и облако разряжается», производя молнию.
Команда описала свое изобретение 27 февраля в Nature.
Энергия будущего?
По словам Яо, новое устройство может стать серьезной инновацией в области возобновляемых источников энергии. В конце концов, отмечает он, «влажность везде». Устройства очень тонкие, их можно штабелировать. В отличие от солнечных батарей, они не нуждаются в свете или для покрытия большой площади. Их можно использовать в помещении или на улице. Они даже могут стать частью мебели, сотовых телефонов и многого другого, не будучи заметными.
По словам Яо, самое приятное то, что сбор микробной проволоки не производит вредных химикатов. А когда в устройствах больше нет необходимости, золотые электроды можно использовать повторно или переработать. Нанопроволоки можно выбросить, позволяя белку разрушиться естественным путем. Это означает, что, в отличие от других видов возобновляемой энергии, по словам Яо, нет долгосрочных отходов, загрязняющих окружающую среду.
«Похоже, это важная технология», - говорит Цюаньбинь Дай. Он исследователь нанотехнологий, который не принимал участия в исследовании. Он работает в Университете Кейс Вестерн Резерв в Кливленде, штат Огайо. Он отмечает, что у многих людей есть «сотовые телефоны и носимая электроника, которые необходимо заряжать». По его словам, идея приводить их в действие из влажного воздуха очень привлекательна. Белковые нанопроволоки могут производить электроэнергию где угодно и в любое время суток. «Будет интересно увидеть, как это будет успешно реализовано», - говорит он.
Яо и Ловли уже работают над тем, чтобы это произошло. Одно из ограничений на данный момент - как быстро вырастить достаточное количество микробных нанопроволок. Но Ловли участвует. Он уже внедрил ген для создания нанопроволок в быстрорастущие бактерии.
Это одна из серии новостей о технологиях и инновациях, которая стала возможной благодаря щедрой поддержке Фонда Лемельсона.
Эти маленькие устройства превращают химическую энергию в электрическую
Сколько батареек сейчас вокруг вас? Если вы читаете это на смартфоне или iPad, это одно. Если поблизости есть портативный компьютер, то это два. Если вы носите часы или FitBit, то это три. Пульт для телевизора? Там, наверное, две батарейки. Чем больше ищешь, тем больше находишь. Батарейки питают предметы, которые мы используем каждый день, от ховербордов и электронных скутеров до телефонов в наших карманах.
Батарейки - это устройства, преобразующие химическую энергию в электрическую. Материалы внутри батарейки теряют электроны - крошечные отрицательно заряженные частицы. Эти электроны текут к другому материалу в батарее. Поток электронов - это электрический ток. И этот ток питает ваше устройство. Батареи настолько важны, что ученые, создавшие их, получили Нобелевскую премию.
Хотя батарейки полезны, они также могут быть опасными. Жидкости и пасты внутри, которые помогают создавать ток, могут загореться - с очень опасными последствиями. Сейчас ученые работают над созданием безопасных и мощных батарей. Они также находят новые способы создания электрического тока. Некоторые устройства однажды могут работать от электрического тока, вырабатываемого вашим потом. Также возможно использование бактерий.
Литий-ионная революция
Литий-ионные аккумуляторы есть везде. Они есть в сотовых телефонах, портативных компьютерах и даже игрушках. Крошечные батарейки питают переносную электронику. Эти батарейки «действительно произвели революцию в нашем мире», - говорит Нил Дасгупта. Он инженер-механик в Мичиганском университете в Анн-Арборе. Некоторые автопроизводители начинают заменять бензиновые двигатели литий-ионными батареями. Это может позволить нам использовать возобновляемые источники энергии для заправки наших автомобилей, отмечает Дасгупта.
Технология настолько важна, что ученые, добившиеся ключевых достижений, получили Нобелевскую премию по химии 2019 года.
Но есть и недостатки
Тепловой разгон
Литий-ионный аккумулятор может перегреться, если у него слишком много или слишком мало заряда. Разработчики аккумуляторов используют компьютерный чип для контроля уровня заряда. Когда заряд батареи вашего устройства составляет 5 процентов, значит, он не совсем разряжен. Но если батарея разряжается сильнее или заряжается слишком сильно, могут возникнуть опасные химические реакции.
Одна из этих реакций образует металлический литий на аноде (вместо того, чтобы накапливать ионы лития внутри анода). «Это на самом деле может вызвать горячие точки. И [металл] может реагировать с электролитом », - объясняет Дживараджан. Другая реакция высвобождает кислородный газ из катода. По его словам, это сочетание тепла и легковоспламеняющегося электролита - «действительно хорошая комбинация для появления огня».
Батарея, которая не загорится
Спенсер Ланжевен подносит паяльную лампу к электролиту батареи размером с монету. При температуре около 1800 ° C (3272 ° F) слой геля
потрескивает, как карамельная корочка на десерте из крем-брюле
Этот электролит, материал, который позволяет ионам лития перемещаться внутри батарей, не загорается при поджоге пламенем. Он был разработан исследователями Лаборатории прикладной физики Джона Хопкинса.
Этот звук - вода в кипящем электролите, объясняет химик. Ланжевен - часть команды, создавшей электролит. Они работают в Лаборатории прикладной физики Университета Джонса Хопкинса в Лореле, штат Мэриленд. Материал электролита светится как ракета. Это из-за содержащегося в нем лития. Но этот материал не горит.
Ланжевен и его команда описали этот новый электролит в журнале Chemical Communications от 11 ноября 2019 года.
Наконечник факела намного горячее, чем температура, достигаемая при тепловом разгоне, отмечает химик Адам Фриман. Он также работает в лаборатории в Лореле. Если батареи содержат этот электролит, «по крайней мере, все это не будет служить источником топлива», - говорит он.
Команда показала, что они могут отрезать обгоревшую часть батареи, и элемент продолжает работать. Даже после того, как он был разрезан, он по-прежнему выделяет достаточно энергии для работы небольшого вентилятора. Они нарезали клетки. Их окунули в воду. Они даже пробили в них дыры из авиационной пушки, чтобы имитировать выстрелы. Даже эта огневая мощь не заставила их загореться.
Электролит основан на гидрогеле. Это разновидность водолюбивого полимера. Химики обычно держатся подальше от воды при изготовлении батарей. Вода ограничивает диапазон напряжения батареи. Если напряжение становится слишком высоким или слишком низким, сама вода становится опасной.
В будущем: больше подзарядок
Одна большая цель для исследователей, работающих с водой в соли и твердыми электролитами, - увеличить количество раз, когда их батарейки можно перезарядить. Литий-ионные аккумуляторы медленно теряют способность удерживать заряд. Батарея iPhone может заряжаться и разряжаться около 750 раз за несколько лет. Команда Ланжевена пока сообщила только о 120 таких циклах для батареи с ее электролитом. Эта группа стремится к тому, чтобы проработать тысячи циклов.
Каждому хотелось бы иметь небольшие и легкие аккумуляторы, которые обеспечивают более длительное питание их телефонов и служат годами. Но мы не можем забыть о случайных авариях с аккумулятором, например, о том, что поджег дом семьи Махони. Поскольку инженеры и ученые стремятся вложить в батареи больше энергии, безопасность остается ключевой целью.