Small Businesses Help Us Explore Space!

Small Businesses Help Us Explore Space!

Earlier this month, Congress introduced a resolution officially recognizing Nov. 24, 2018 as Small Business Saturday “to increase awareness of the value of locally owned small businesses and the impact of locally owned small businesses on the economy of the United States.”

This annual American Express campaign began on the Saturday after Thanksgiving in 2010 to support “local places that make our communities strong.”

image

For 60 years, we have supported and partnered with small businesses across the country to pioneer the future of space exploration, scientific discovery and aeronautics research.

Our Small Business Innovative Research (SBIR) and Small Business Technology Transfer (STTR) program funds the research, development and demonstration of innovative technologies that help address space exploration challenges and have significant potential for commercialization. In 2018, our program awarded 555 contracts to small businesses for a total of $180.1 million.

image

NASA works with small business Nanocomp Technologies Inc. of Merrimack, New Hampshire, to advance manufacturing of carbon nanotube composite materials.

Our investments in small businesses help equip future missions to the Moon, Mars and beyond by advancing our science and technology capabilities. They also benefit the U.S. economy. The SBIR/STTR program’s 2017 Economic Impact Report indicated a $2.74 return for every dollar spent on awards—money well spent!

Small businesses also contribute to scientific advances for the International Space Station as well as here on Earth. Pancopia, Inc. in Hampton, Virginia, developed an innovative, high-performance water recycling system to remove high levels of organic carbon and nitrogen in wastewater. Recycling water in space saves money on resupply and enables more Earth-independence and self-reliance. With the help of an SBIR award, Pancopia is also working on a similar system for public wastewater that has the potential to cut treatment expenses to less than half the current costs.

image

Small businesses also contribute to scientific advances for the International Space Station as well as here on Earth. Pancopia, Inc. in Hampton, Virginia, developed an innovative, high-performance water recycling system to remove high levels of organic carbon and nitrogen in wastewater. Recycling water in space saves money on resupply and enables more Earth-independence and self-reliance. With the help of an SBIR award, Pancopia is also working on a similar system for public wastewater that has the potential to cut treatment expenses to less than half the current costs.

image

When NASA went to the private sector to develop deformable mirror technology—a key component of starlight-blocking instruments—a small business in Berkeley, California, applied for research and development funding through SBIR to design extra-precision, segmented mirrors. This innovative approach for a small deformable mirror made up of many tiny hexagonal segments enables advanced control when paired with other optics.

image

Data collected by a telescope using the Iris AO deformable mirror can be used to determine if the target investigated in space is an exoplanet based on its orbit, and if the exoplanet has atmosphere using color spectrum imaging analysis. The Iris AO technology is currently being refined and prepared for inclusion in a future exoplanet mission.

Does your small business have a big idea? Your next opportunity to join our SBIR/STTR program starts on Jan. 7, 2019, when our next solicitation opens. We’ll be seeking new innovative ideas from small businesses and research institutions for research, development and demonstration of innovative technologies. Go to https://www.nasa.sbir.gov/ to learn more.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

8 years ago

Largest Batch of Earth-size, Habitable Zone Planets

Our Spitzer Space Telescope has revealed the first known system of seven Earth-size planets around a single star. Three of these planets are firmly located in an area called the habitable zone, where liquid water is most likely to exist on a rocky planet.

image

This exoplanet system is called TRAPPIST-1, named for The Transiting Planets and Planetesimals Small Telescope (TRAPPIST) in Chile. In May 2016, researchers using TRAPPIST announced they had discovered three planets in the system.

image

Assisted by several ground-based telescopes, Spitzer confirmed the existence of two of these planets and discovered five additional ones, increasing the number of known planets in the system to seven.

image

This is the FIRST time three terrestrial planets have been found in the habitable zone of a star, and this is the FIRST time we have been able to measure both the masses and the radius for habitable zone Earth-sized planets.

All of these seven planets could have liquid water, key to life as we know it, under the right atmospheric conditions, but the chances are highest with the three in the habitable zone.

image

At about 40 light-years (235 trillion miles) from Earth, the system of planets is relatively close to us, in the constellation Aquarius. Because they are located outside of our solar system, these planets are scientifically known as exoplanets. To clarify, exoplanets are planets outside our solar system that orbit a sun-like star.

image

In this animation, you can see the planets orbiting the star, with the green area representing the famous habitable zone, defined as the range of distance to the star for which an Earth-like planet is the most likely to harbor abundant liquid water on its surface. Planets e, f and g fall in the habitable zone of the star.

Using Spitzer data, the team precisely measured the sizes of the seven planets and developed first estimates of the masses of six of them. The mass of the seventh and farthest exoplanet has not yet been estimated.

image

For comparison…if our sun was the size of a basketball, the TRAPPIST-1 star would be the size of a golf ball.

Based on their densities, all of the TRAPPIST-1 planets are likely to be rocky. Further observations will not only help determine whether they are rich in water, but also possibly reveal whether any could have liquid water on their surfaces.

The sun at the center of this system is classified as an ultra-cool dwarf and is so cool that liquid water could survive on planets orbiting very close to it, closer than is possible on planets in our solar system. All seven of the TRAPPIST-1 planetary orbits are closer to their host star than Mercury is to our sun.

image

 The planets also are very close to each other. How close? Well, if a person was standing on one of the planet’s surface, they could gaze up and potentially see geological features or clouds of neighboring worlds, which would sometimes appear larger than the moon in Earth’s sky.

image

The planets may also be tidally-locked to their star, which means the same side of the planet is always facing the star, therefore each side is either perpetual day or night. This could mean they have weather patterns totally unlike those on Earth, such as strong wind blowing from the day side to the night side, and extreme temperature changes.

image

Because most TRAPPIST-1 planets are likely to be rocky, and they are very close to one another, scientists view the Galilean moons of Jupiter – lo, Europa, Callisto, Ganymede – as good comparisons in our solar system. All of these moons are also tidally locked to Jupiter. The TRAPPIST-1 star is only slightly wider than Jupiter, yet much warmer. 

How Did the Spitzer Space Telescope Detect this System?

Spitzer, an infrared telescope that trails Earth as it orbits the sun, was well-suited for studying TRAPPIST-1 because the star glows brightest in infrared light, whose wavelengths are longer than the eye can see. Spitzer is uniquely positioned in its orbit to observe enough crossing (aka transits) of the planets in front of the host star to reveal the complex architecture of the system. 

image

Every time a planet passes by, or transits, a star, it blocks out some light. Spitzer measured the dips in light and based on how big the dip, you can determine the size of the planet. The timing of the transits tells you how long it takes for the planet to orbit the star.

image

The TRAPPIST-1 system provides one of the best opportunities in the next decade to study the atmospheres around Earth-size planets. Spitzer, Hubble and Kepler will help astronomers plan for follow-up studies using our upcoming James Webb Space Telescope, launching in 2018. With much greater sensitivity, Webb will be able to detect the chemical fingerprints of water, methane, oxygen, ozone and other components of a planet’s atmosphere.

At 40 light-years away, humans won’t be visiting this system in person anytime soon...that said...this poster can help us imagine what it would be like: 

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
4 years ago
Want To Watch Me Make A Big Splash? Tuesday We Will Doing A Water Drop Test NASA Langley Recearch Center’s

Want to watch me make a big splash? Tuesday we will doing a water drop test NASA Langley Recearch Center’s gantry. This is the second of four tests, which are aimed to help our team prepare for Artemis II, NASA’s first Artemis mission with crew. Watch here: https://www.nasa.gov/press-release/nasa-to-host-virtual-viewing-of-orion-spacecraft-drop-test

4 years ago

Can we hear mars from this rover?


Tags
6 years ago

10 Things: How to Photograph a Meteor Shower

Taking photographs of a meteor shower can be an exercise in patience as meteors streak across the sky quickly and unannounced, but with these tips – and some good fortune – you might be rewarded with a great photo.

These tips are meant for a DSLR or mirrorless camera, but some point-and-shoot cameras with manual controls could be used as well.

1. The Photo Op: Perseids Meteors

The Perseids are dusty remnants of comet 109P/Swift-Tuttle.

Earth passes through the comet’s invisible, multi-billion mile trail of tiny debris each year around August, creating a meteor shower of so-called “shooting stars” as the particles are vaporized in our atmosphere.

Perseid meteors already are streaking across the sky. This year's shower peaks on a moonless summer night -from 4 pm on the 12th until 4 am on the 13th Eastern Daylight Time.

Read more on the Perseids ›

2. Get away from city lights and find a place with dark skies.

10 Things: How To Photograph A Meteor Shower

In this 30 second exposure, a meteor streaks across the sky in Spruce Knob, West Virginia, during the 2016 Perseids meteor shower. Credit: NASA/Bill Ingalls

Too much light and it will be hard for your eyes to see fainter meteors, plus your image will get flooded with the glow of light. Turning down the brightness of the camera’s LCD screen will help keep your eyes adjusted to the dark. The peak of the 2018 Perseid meteor shower occurs just after the new moon, meaning a thin crescent will set long before the best viewing hours, leaving hopeful sky watchers with a moonlight-free sky!

3. Use a tripod.

10 Things: How To Photograph A Meteor Shower

In this ten-second exposure, a meteor streaks across the sky above Washington, DC during the 2015 Perseids meteor shower, Credit: NASA/Joel Kowsky

Meteor photography requires long exposures, and even the steadiest of hands can’t hold a camera still enough for a clear shot. Heavier tripods help reduce shaking caused by wind and footsteps, but even a lightweight tripod will do. You can always place sandbags against the feet of the tripod to add weight and stability. If you don’t have a tripod, you might be able to prop your camera on or up against something around you, but be sure to secure your camera.

4. Use a wide-angle lens.

10 Things: How To Photograph A Meteor Shower

In this 30 second exposure taken with a circular fish-eye lens, a meteor streaks across the sky during the 2016 Perseids meteor shower as a photographer wipes moisture from the camera lens Friday, August 12, 2016 in Spruce Knob, West Virginia. Credit: NASA/Bill Ingalls

A wide-angle lens will capture more of the sky and give you a greater chance of capturing a meteor in your shot, while a zoom lens captures a smaller area of the sky. The odds of a meteor streaking past that small patch are lower.

5. Use a shutter release cable or the camera’s built-in timer.

10 Things: How To Photograph A Meteor Shower

Long exposures are not just for meteors. In this shot taken at Joshua Tree National Park, a hiker's headlamp leaves a trail of light along a twilight path. Credit: National Park Service / Hannah Schwalbe

A tripod does a great job of reducing most of the shaking your camera experiences, but even the act of pressing the shutter button can blur your extended exposure. Using the self-timer gives you several seconds for any shaking from pressing the shutter button to stop before the shutter is released. A shutter release cable (without a self-timer) eliminates the need to touch the camera at all. And if your camera has wifi capabilities, you might be able to activate the shutter from a mobile device.

6. Manually focus your lens.

10 Things: How To Photograph A Meteor Shower

In this 30 second exposure, a meteor streaks across the sky during the annual Perseids meteor shower Friday, August 12, 2016 in Spruce Knob, West Virginia. Credit: NASA/Bill Ingalls

At night, autofocus will struggle to find something on which to focus. Setting your focus to infinity will get you close, but chances are you’ll have to take some test images and do some fine tuning. With your camera on a tripod, take a test image lasting a few seconds, then use the camera’s screen to review the image. Zoom in to a star to see how sharp your focus is. If the stars look like fuzzy blobs, make tiny adjustments to the focus and take another test image.

Repeat until you are happy with the result.

If your camera has a zoomable electronic viewfinder or live view option, you might be able to zoom to a star and focus without having to take a test image.

7. Aim your camera.

10 Things: How To Photograph A Meteor Shower

The Perseids appear to radiate from the constellation Perseus, visible in the northern sky soon after sunset this time of year.

Even though we don’t know when or where a single meteor will appear, we do know the general area from which they’ll originate.

Meteor showers get their name based on the point in the sky from which they appear to radiate. In the case of the Perseids, during their peak, they appear to come from the direction of the constellation Perseus in the northern sky.

8. Calculate your exposure time.

10 Things: How To Photograph A Meteor Shower

In this 20-second exposure, a meteor lights up the sky over the top of a mountain ridge near Park City, Utah. Even though this image was captured during the annual Perseid meteor shower, this "shooting star" is probably not one of the Perseid meteors, which originate from material left behind by Comet Swift-Tuttle. Instead, it's likely one of the many bits of rock and dust that randomly fall into the atmosphere on any given night. Credit: NASA/Bill Dunford

As Earth rotates, the stars in the sky appear to move, and if your shutter is open long enough, you might capture some of that movement. If you want to avoid apparent star movement, you can follow the 500 Rule. Take 500 and divide it by the length in millimeters of your lens. The resulting number is the length of time in seconds that you can keep your shutter open before seeing star trails. For example, if you’re using a 20 mm lens, 25 seconds (500 divided by 20) is the longest you can set your exposure time before star trails start to show up in your images.

9. Experiment!

10 Things: How To Photograph A Meteor Shower

In this 30 second exposure photo, hikers find their way to the top of Spruce Knob in West Virginia to view the annual Perseids meteor shower, Friday, August 12, 2016. Credit: NASA/Bill Ingalls

Once you know the maximum exposure time, you can set your shutter priority to that length and let the camera calculate other settings for your first image. Depending on how the image turns out, you can manually adjust aperture (set it to a lower number if the image is too dark) and ISO (set it to a higher number if the image is too dark) to improve your next images. Changing only one setting at a time will give you a better understanding of how those changes affect your image.

10. Enjoy the show.

10 Things: How To Photograph A Meteor Shower

The crew of the International Space Station captured this Perseid meteor falling to Earth over China in 2011. Credit: NASA

With your camera settings adjusted, capturing that perfect photo is just a matter of time and luck. The highest rate of meteors visible per hour is in the hours after midnight and before dawn. Set up your camera next to a lounge chair or a blanket to witness the wonder of a meteor shower for yourself – and, with any luck, you’ll take home some envy-inducing shots, too!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
8 years ago

Top 10 Star Trek Planets Chosen by Our Scientists

What would happen if the crew of the Starship Enterprise handed over the controls to our scientists and engineers? It turns out many are avid Star Trek fans with lengthy itineraries in mind.

1. Vulcan

image

What is perhaps the most famous Star Trek planet was placed by creator Gene Roddenberry in a real star system: 40 Eridani. This trinary system of three dwarf stars, about 16 light-years from Earth, could play host to exoplanets; none have been detected there so far. The most massive is 40 Eridani A, chosen as Vulcan’s sun.

2. Andoria

image

An icy “M-class” (Star Trek's term for “Earth-like”) moon of a much larger planet—a gas giant—that is home to soft-spoken humanoids with blue skin, white hair and stylish antennae. In our solar system, gas giants play host to icy moons, such as Jupiter’s Europa or Saturn’s Enceladus, that possess subsurface oceans locked inside shells of ice. Our missions are searching for lifeforms that might exist in these cold, dark habitats.

3. Risa

image

Another Trek M-class planet known for its engineered tropical climate and its welcoming humanoid population.  The planet is said to orbit a binary, or double, star system—in Star Trek fan lore, Epsilon Ceti, a real star system some 79 light-years from Earth. The first discovery of a planet around a binary was Kepler-16b, which is cold, gaseous and Saturn-sized.

4. “Shore Leave” planet, Omicron Delta region

image

This is another amusement park of a planet, where outlandish characters are manufactured in underground factories straight from the crew members’ imaginations. In real life, astronauts aboard the International Space Station print out plastic tools and containers with their own 3-D printer.

5. Nibiru

image

“Star Trek: Into Darkness” finds Captain Kirk and Dr. McCoy fleeing from chalk-skinned aliens through a red jungle. Red or even black vegetation could exist on real planets that orbit cooler, redder stars, an adaptation meant to gather as much light for photosynthesis as possible. An example may be Kepler-186f, a planet only 10 percent larger than Earth in diameter. At high noon, the surface of this planet would look something like dusk on Earth.

6. Wolf 359

image

A star best known in the Star Trek universe as the site of a fierce battle in which a multitude of “Star Trek: Next Generation” ships are defeated by the Borg. But Wolf 359 is a real star, one of the closest to Earth at a distance of 7.8 light-years. Wolf 359 is also a likely observational target for the Kepler space telescope in the upcoming Campaign 14 of its “K2” mission.

7. Eminiar VII/Vendikar

image

These two planets are neighbors, sharing a star system. So, of course, they’ve been at war for centuries. While we have no signs of interplanetary war, multiple rocky worlds have been discovered orbiting single stars. A cool dwarf star called TRAPPIST-1 is orbited by three Earth-size planets; two have a chance of being the right temperature for liquid water, with possible Earth-like atmospheres.

8. Remus

image

The planets Romulus and Remus are home to the Romulan Empire (ancient Rome, anyone?), although Remus seemed to have gotten the raw end of the deal. Remus is tidally locked, one face always turned to its star. Tidally locked worlds might well be a real thing, with many possible candidates discovered with our Kepler space telescope. The habitable portion of the surface of such planets might be confined to a band between the day and night sides called the “terminator zone”—a.k.a. the twilight zone.

9. Janus VI

image

A rocky world lacking an atmosphere, perhaps similar to Mars. While humans must maintain an artificial underground environment to survive, the innards of the planet are a comfortable home to an alien species known as the “Horta.” Their rock-like biochemistry is based on silicon, rather than carbon, inspiring us to imagine the many forms life might take in the universe.

10. Earth

image

In the Star Trek universe, Earth is home to Starfleet Headquarters; the real Earth is, at least so far, the only life-bearing world we know. No true Earth analogs have been discovered among the real exoplanets detected so far. But a new generation of space telescopes, designed to capture direct images of exoplanets in Earth’s size range, might one day reveal an alternative “pale blue dot.”

Learn more about exoplanets at: exoplanets.nasa.gov

Link to full article: https://exoplanets.nasa.gov/news/1378/top-10-star-trek-destinations-chosen-by-nasa-scientists/

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Finalists for a Future Mission to Explore the Solar System

We’ve selected two finalists for a robotic mission that is planned to launch in the mid-2020s! Following a competitive peer review process, these two concepts were chosen from 12 proposals that were submitted in April under a New Frontiers program announcement opportunity.

What are they?

In no particular order…

CAESAR

image

CAESAR, or the Comet Astrobiology Exploration Sample Return mission seeks to return a sample from 67P/Churyumov-Gerasimenko – the comet that was successfully explored by the European Space Agency’s Rosetta spacecraft – to determine its origin and history.

image

This mission would acquire a sample from the nucleus of comet Churyumov-Gerasimenko and return it safely to Earth. 

image

Comets are made up of materials from ancient stars, interstellar clouds and the birth of our solar system, so the CAESAR sample could reveal how these materials contributed to the early Earth, including the origins of the Earth's oceans, and of life.

Dragonfly

A drone-like rotorcraft would be sent to explore the prebiotic chemistry and habitability of dozens of sites on Saturn’s moon Titan – one of the so-called ocean worlds in our solar system.

image

Unique among these Ocean Worlds, Titan has a surface rich in organic compounds and diverse environments, including those where carbon and nitrogen have interacted with water and energy.

image

Dragonfly would be a dual-quadcopter lander that would take advantage of the environment on Titan to fly to multiple locations, some hundreds of miles apart, to sample materials and determine surface composition to investigate Titan's organic chemistry and habitability, monitor atmospheric and surface conditions, image landforms to investigate geological processes, and perform seismic studies.

What’s Next?

The CAESAR and Dragonfly missions will receive funding through the end of 2018 to further develop and mature the concepts. It is planned that from these, one investigation will be chosen in the spring of 2019 to continue into subsequent mission phases.

image

That mission would be the fourth mission in the New Frontiers portfolio, which conducts principal investigator (PI)-led planetary science missions under a development cost cap of approximately $850 million. Its predecessors are the New Horizons mission to Pluto and a Kuiper Belt object, the Juno mission to Jupiter and OSIRIS-REx, which will rendezvous with and return a sample of the asteroid Bennu. 

Key Technologies

We also announced that two mission concepts were chosen to receive technology development funds to prepare them for future mission opportunities.

image

The Enceladus Life Signatures and Habitability (ELSAH) mission concept will receive funds to enable life detection measurements by developing cost-effective techniques to limit spacecraft contamination on cost-capped missions.

image

The Venus In situ Composition Investigations (VICI) mission concept will further develop the VEMCam instrument to operate under harsh conditions on Venus. The instrument uses lasers on a lander to measure the mineralogy and elemental composition of rocks on the surface of Venus.

The call for these mission concepts occurred in April and was limited to six mission themes: comet surface sample return, lunar south pole-Aitken Basin sample return, ocean worlds, Saturn probe, Trojan asteroid tour and rendezvous and Venus insitu explorer.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
4 years ago
Clouds Swirling In The Coffee Colored Atmosphere Of Jupiter, Looks More Like A Familiar Morning Beverage

Clouds swirling in the coffee colored atmosphere of Jupiter, looks more like a familiar morning beverage of champions. 

This image from our Juno spacecraft was captured in North North Temperate Belt. Image Credit: Enhanced Image by Gerald Eichstädt and Sean Doran (CC BY-NC-SA)/NASA/JPL-Caltech/SwRI/MSSS

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Spacewalk Reassignments: What’s the Deal?

image

On Friday, March 29, Christina Koch and Anne McClain were scheduled to perform a spacewalk together to upgrade the power systems of the International Space Station. It would have been the first all-female spacewalk in human history. While disappointing to many people, after the last spacewalk was completed on March 22, NASA changed the assignments to protect the safety of the crew and the timing of the mission. Now, Christina Koch and Nick Hague will be performing this upcoming spacewalk, leaving lots of people wondering: What’s the deal?

1. Why did the availability of spacesuit sizes affect the schedule?

image

Spacesuits are not “one size fits all.” We do our best to anticipate the spacesuit sizes each astronaut will need, based on the spacesuit size they wore in training on the ground, and in some cases astronauts train in multiple sizes.

McClain trained in both a medium and a large on Earth. However, living in microgravity can change the size of your body! In fact, Anne McClain has grown two inches since she launched to the Space Station.

McClain realized that the medium she wore during the March 22 spacewalk was a better fit for her in space. She had planned to wear a large during the March 29 spacewalk.

In a tweet, McClain explained: “This decision was based on my recommendation. Leaders must make tough calls, and I am fortunate to work with a team who trusts my judgement. We must never accept a risk that can instead be mitigated. Safety of the crew and execution of the mission come first.”

To provide each astronaut the best fitting spacesuit during their spacewalks, Koch will wear the medium torso on March 29, and McClain will wear it again on April 8.

2. Why is spacesuit sizing so important?

image

The spacesuit is a mini spaceship that keeps our astronauts alive while they are spacewalking!

Astronauts train several hours on Earth in the Neutral Buoyancy Lab for every hour they spend spacewalking. Spacewalks are the most physically demanding thing we ask astronauts to do, which is why an optimally fitted spacesuit is important to completing the assigned tasks and overall mission!

3. How come you don’t have enough spacesuits in the right size?

image

We do have enough torsos. The spacesuit takes into account more than 80 different body measurements to be configured for each astronaut. The suit has three sizes of upper torso, eight sizes of adjustable elbows, over 65 sizes of gloves, two sizes of adjustable waists, five sizes of adjustable knees and a vast array of padding options for almost every part of the body.

In space, we have two medium hard upper torsos, two larges and two extra larges; however, one of the mediums and one of the extra larges are spares that would require 12 hours of crew time for configuration.

Configuring the spare medium is a very methodical and meticulous process to ensure the intricate life support system — including the controls, seals, and hoses for the oxygen, water and power as well as the pressure garment components — are reassembled correctly with no chance of leaks. 

Nothing is more important than the safety of our crew!

12 hours might not seem like a long time, but the space station is on a very busy operational schedule. An astronaut's life in space is scheduled for activities in five minute increments. Their time is scheduled to conduct science experiments, maintain their spaceship and stay healthy (they exercise two hours a day to keep their bones and muscles strong!).

The teams don’t want to delay this spacewalk because two resupply spacecraft – Northrop Grumman Cygnus and SpaceX cargo Dragon – are scheduled to launch to the space station in the second half of April. That will keep the crew very busy for a while!

4. Why has there not already been an all-female spacewalk?

image

NASA does not make assignments based on gender.

The first female space shuttle commander, the first female space station commander and the first female spacewalker were all chosen because they the right individuals for the job, not because they were women. It is not unusual to change spacewalk assignments as lessons are learned during operations in space.

McClain became the 13th female spacewalker on March 22, and Koch will be the 14th this Friday – both coincidentally during Women’s History Month! Women also are filling two key roles in Mission Control: Mary Lawrence as the lead flight director and Jaclyn Kagey as the lead spacewalk officer.

5. When will the all-female spacewalk happen?

image

An all-female spacewalk is inevitable! As the percentage of women who have become astronauts increases, we look forward to celebrating the first spacewalk performed by two women! McClain, Koch (and Hague!) are all part of the first astronaut class that was 50 percent women, and five of the 11 members of the 2017 astronaut candidate class are also women.

You can watch the upcoming spacewalk on March 29 at 6:30 ET, which is one in a series to upgrade the station’s power technology with new batteries that store power from the solar arrays for the station to use when it is in orbital night.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
9 years ago

What’s Enceladus?

Before we tell you about Enceladus, let’s first talk about our Cassini spacecraft…

Our Cassini mission to Saturn is one of the most ambitious efforts in planetary space exploration ever mounted. Cassini is a sophisticated robotic spacecraft orbiting the ringed planet and studying the Saturnian system in detail.

image

Cassini completed its initial four-year mission to explore the Saturn System in June 2008. It has also completed its first mission extension in September 2010. Now, the health spacecraft is making exciting new discoveries in a second extension mission!

Enceladus

image

Enceladus is one of Saturn’s many moons, and is one of the brightest objects in our solar system. This moon is about as wide as Arizona, and displays at least five different types of terrain. The surface is believed to be geologically “young”, possibly less than 100 million years old.

Cassini first discovered continually-erupting fountains of icy material on Enceladus in 2005. Since then, the Saturn moon has become one of the most promising places in the solar system to search for present-day habitable environments.  

image

Scientists found that hydrothermal activity may be occurring on the seafloor of the moon’s underground ocean. In September, it was announced that its ocean –previously thought to only be a regional sea – was global!

Since Cassini is nearing the end of its mission, we are able to make a series of three close encounters with Enceladus, one of Saturn’s moons.

Close Encounters

On Oct. 14, Cassini performed a mid-range flyby of Enceladus, but the main event will take place on Oct. 28, when Cassini will come dizzyingly close to the icy moon. During this flyby, the spacecraft will pass a mere 30 miles above the moon’s south polar region!

What’s Enceladus?

This will be the deepest-ever dive through the moon’s plume of icy spray, where Cassini can collect images and valuable data about what’s going on beneath the frozen surface.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago
🌊🌊🌊 This Natural-color Image Captured May 17 Near The Coast Of Guinea-Bissau In West Africa

🌊🌊🌊 This natural-color image captured May 17 near the coast of Guinea-Bissau in West Africa shows estuaries branching out like a network of roots from a plant. Crossfading to a data visualization helps reveals water clarity due to dissolved organic matter in Guinea-Bissau. 

With their long tendrils, the rivers meander through the country’s lowland plains to join the Atlantic Ocean. On the way, they carry water, nutrients, but also sediments out from the land. These estuaries play an important role in agriculture for this small country that is mostly made up of flat terrain. While the coastal valleys can flood often during the rainiest part of the year in the summer, the rain makes the valleys good locations for farming, especially rice cultivation. Using satellite data, researchers continue to observe the country's change in terrain and as a result, they're documenting a regrowth of previously eroded coastal areas.

Learn more

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
  • su-thelife-lover
    su-thelife-lover liked this · 3 years ago
  • ovodin-blog
    ovodin-blog liked this · 5 years ago
  • turcerp-blog
    turcerp-blog liked this · 5 years ago
  • mariopgrant
    mariopgrant liked this · 6 years ago
  • allin1dot
    allin1dot reblogged this · 6 years ago
  • vpng
    vpng reblogged this · 6 years ago
  • saratfl
    saratfl liked this · 6 years ago
  • gdisjaaam-blog
    gdisjaaam-blog liked this · 6 years ago
  • ains-riukah-blog
    ains-riukah-blog reblogged this · 6 years ago
  • ains-riukah-blog
    ains-riukah-blog liked this · 6 years ago
  • grthetigersblog
    grthetigersblog reblogged this · 6 years ago
  • vpng
    vpng reblogged this · 6 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags